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CHAPTER 1

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a rough idea of what p-adic Hodge theory is about. By
nature, p-adic Hodge theory has two sides of the story, namely the arithmetic side and the
geometric side. We will briefly motivate and describe each side of the story, and discuss how
the two sides are related.

1.1. The arithmetic perspective

From the arithmetic perspective, p-adic Hodge theory is the study of p-adic Galois rep-
resentations. i.e., continuous representations ' := Gal(K/K) — GL,(Q,) where K is a
p-adic field. This turns out to be much more subtle and interesting than the study of f-adic
Galois representations, i.e. continuous representations 'y — GL,,(Q,) with ¢ # p. In the
f-adic case, the topologies on I'x and @y do not get along with each other very well, thereby
imposing a huge restriction on the kinds of continuous representations that we can have. In
the p-adic case, on the other hand, we don’t have this “clash” between the topologies on I'x
and @Qp, and consequently have much more Galois representations than in the f-adic case.

Remark. Our definition of p-adic field allows infinite extensions of Q,. For a precise defini-
tion, see Definition in Chapter

In this subsection, we discuss a toy example to motivate and demonstrate some key ideas
from the arithmetic side of p-adic Hodge theory. Let E be an elliptic curve over Q, with good
reduction. This means that we have a unique elliptic scheme & over Z, with &g, ~ E. For
each prime ¢ (which may be equal to p), the Tate module

Ty(E) = lim E[")(Q,) ~ Z}
is equipped with a continuous Gg,-action, which means that the rational Tate module
Vi(E) := Ty(E) ®z, Q¢ ~ Q}
is an f-adic Galois representation. The Tate module Ty(E) and the rational Tate module
Vo(E) contain important information about E, as suggested by the following fact:
Fact. For two elliptic curves Iy and E> over Q,, the maps
HOIn(El, Eg) & Ly — Homp@p (Tg(El), Tg(EQ))

Hom(Ey, E) ® Q¢ — Homp (Ve(E1), Vi(E2)) 4

are injective; in other words, a map between E; and F» is determined by the induced map on
the (rational) Tate modules as Galois representations.

Remark. The above fact remains true if QQ, is replaced by an arbitrary field L of characteristic
is not equal to £. Moreover, the maps in (1.1)) become isomorphism if L is a finite field, a
global function field or a number field, as shown respectively by Tate, Zarhin and Faltings.
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For ¢ # p, we can explicitly describe the Galois action on Ty(F) (and Vy(E)) by passing
to the mod p reduction &, of £. Note that &, is an elliptic curve over a finite field [F;, so
the Galois action of I'r, on the Tate module Ty(F,) and the rational Tate module V;(&r,)
are very well understood. In fact, the Frobenius element of I'r,, which topologically generates
the Galois group I'p,, acts on Ty(Er,) with characteristic polynomial 22 — ax + p where
a=p+1—#&,(Fp). Now the punchline is that we have isomorphisms

Ti(E) = Ty(Er,) and Vi(E) ~ Vi(Er,) (1.2)

as I'g,-representations, where the actions on T;(&f,) and V;(&r,) are given by I'g, — I'p,. In
other words, we can describe the Galois action on Ty(E) (and Vy(E)) as follows:

(1) The action of I'g, factors through the map I'g, — I'r,,.

(2) The Frobenius element of G, acts with characteristic polynomial z? — az + p where
a=p+1—#E,(Fp).

A Galois representation of I'g, which satisfies the statement is said to be unramified.
The terminology comes from the fact that I'p, is isomorphic to Gal(Q}"/Qy), where Q)" de-
notes the maximal unramified extension of Q. It is worthwhile to mention that our discussion
in the preceding paragraph shows one direction of the following important criterion:

Theorem 1.1.1 (Néron [Nér64], Ogg [Ogg67], Shafarevich). An elliptic curve E on Q, has
a good reduction if and only if the Tate module T;(E) is unramified for all primes { # p.

Let us now turn to the case £ = p, which is our primary interest. In this case, we never have
an isomorphism between the (rational) Tate modules as in (1.2)); indeed, T}, (&r, ) is isomorphic
to either Z, or 0 whereas T,(E) is always isomorphic to Zf,. This suggests that the action of
I'g, on T,(E) has a nontrivial contribution from the kernel of the map I'g, — I'r,, called the
inertia group of Qp, which we denote by Ig,.

Therefore we need another invariant of £ which does not lose too much information about
the Galois action under passage to the mod p reduction &,. A solution by Grothendieck and
Tate is to replace the Tate module 7},(E) by the direct limit of p-power torsion groups

E[p>] = lim E[p"]

called the p-divisible group of E. Here we consider each F[p"] as a finite flat group scheme
over Q. It is not hard to see that E[p™] contains all information about the Galois action on
T,(E) in the following sense:

Fact. We can recover the Galois action of I'g, on T),(E) from E[p>].

We can similarly define the p-divisible groups £[p>°] and &, [p™] associated to & and &, .
The p-divisible groups of F, & and &, are related as follows:

E[p™]
®‘Qp/ \@117/,:
] &r, [p™]

We wish to study E[p™] using &, [p™], as we expect that the theory of p-divisible groups

becomes simpler over IF,, than it is over QQ,. The first step towards this end is provided by the
following fundamental result:

E[p™
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Theorem 1.1.2 (Tate [Tat67]). The generic fiber functor

p-divisible groups QQp p-divisible groups
over Zy over

18 fully faithful.

Remark. Theorem is the main result of Tate’s seminal paper [Tat67], which marks
the true beginning of p-adic Hodge theory. Here we already see how this result provides the
first significant progress in the arithmetic side of the theory. In the next subsection we will
see how its proof initiates the geometric side of the theory.

Let us now consider the problem of studying £[p>] using the mod p reduction &r, [p*°].
Here the key is to realize £[p>] as a characteristic 0 lift of &g, [p>]. More precisely, we
identify the category of p-divisible groups over Z, with the category of p-divisible groups over
F, equipped with “lifting data”. Such an identification is obtained by switching to another
category, as stated in the following fundamental result:

Theorem 1.1.3 (Dieudonné [Die55], Fontaine [Fon77]). There are (anti-)equivalences of
categories
p-divisible groups RN Dieudonné modules
over I, over IF,,

p-divisible groups ~ Dieudonné modules over I,
over Zy with an “admissible” filtration

where a Dieudonné module over F, means a finite free Zy-module M equipped with a (Frobenius-
semilinear) endomorphism ¢ such that pM C o(M).

Remark. The description of Dieudonné modules in our situation is misleadingly simple. In
general, the endomorphism ¢ should be Frobenius-semilinear in an appropriate sense. Here
we don’t get this semilinearity since the Frobenius automorphism of F,, acts trivially on Z,,.

We have thus transformed the study of the p-adic Galois action on the Tate modules to
the study of certain explicit semilinear algebraic objects. Roughly speaking, the actions of the
inertia group Ig, and the Frobenius element in I'r, on T},(E) are respectively encoded by the
“admissible” filtration and the (semilinear) endomorphism ¢ on the corresponding Dieudonné
module.

If we instead want to study the p-adic Galois representation of the rational Tate module,
all we have to do is to invert p in the corresponding Dieudonné module. The resulting
algebraic object is a finite dimensional vector space over Q, with a (Frobenius-semilinear)
automorphism . Such an object is called an isocrystal.

Our discussion here shows an example of the defining theme of p-adic Hodge theory.
In fact, much of p-adic Hodge theory is about constructing a dictionary that relates good
categories of p-adic Galois representations to various categories of semilinear algebraic objects.
The dictionary that we described here serves as a prototype for many other dictionaries.

Another recurring theme of p-adic Hodge theory is base change of the ground field K to
the completion K of its maximal unramified extension. In terms of the residue field, this
amounts to passing to the algebraic closure. In most cases, such a base change preserves
key information about the Galois action of I'r. In fact, most good properties of p-adic
representatiggs of ' turn out to be detected on the inertia group, which is preserved under
passing to K as follows:

IK ~ FKUH ~ Fﬁl
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Moreover, base change to K" often greatly simplifies the study of the Galois action of ['k.
For example, in our discussion base change to Q3" amounts to replacing the residue field by
F,, thereby allowing us to make use of the following fundamental result:

Theorem 1.1.4 (Manin [Man63]). The category of isocrystals over @I‘;\n is semisimple.

In summary, we have motivated and described several key ideas in p-adic Hodge theory
via Galois representations that arise from an elliptic curve over QQ, with good reduction. In
particular, our discussion shows a couple of recurring themes in p-adic Hodge theory, as stated
below.

(1) Construction of a dictionary between good categories of p-adic representations and
various categories of semilinear algebraic objects.

(2) Base change of the ground field K to Kun,

It is natural to ask whether there is a general framework for these themes. To answer this
question, we need to investigate the geometric side of the story.

1.2. The geometric perspective

From the geometric perspective, p-adic Hodge theory is the study of the geometry of
a (proper smooth) variety X over a p-adic field K. Our particular interests are various
cohomology theories related to X, such as

e the étale cohomology H}

ét?

e the algebraic de Rham cohomology HJp,
e the crystalline cohomology H

cris’
Note that p-adic Galois representations naturally come into play via the étale cohomology
groups H} (X%, Q,). Hence we already see a vague connection to the arithmetic side of
p-adic Hodge theory.

In this subsection, we motivate and state three fundamental comparison theorems about
these cohomology theories. These theorems share a general theme of extracting some infor-
mation about the geometry of X from the I'g-representation on H (X4, Q,).

Recall that, for a proper smooth C-scheme Y, we have the Hodge decomposition

H'(Y(C),Q ®eC= @ H (Y,
i+j=n
During the proof of Theorem [I.1.2], Tate observed the existence of an analogous decomposition
for the étale cohomology of an abelian variety over K with good reduction. This discovery
led to his conjecture that such a decomposition should exist for all étale cohomology groups
of an arbitrary proper smooth varieties over K. This conjecture is now a theorem, commonly
referred to as the Hodge-Tate decomposition.

Theorem 1.2.1 (Faltings [Fal88]). Let Cx denote the p-adic completion of K. For a proper
smooth variety X over K, there is a canonical isomorphism

H(X5. Q) g, Cx = @ HI(X,2 ) ©x Cx(—5) (1.3)
i+j=n
compatible with Ik -actions.

Remark. Since the action of ' on K is continuous, it uniquely extends to an action on Cg.
Thus T'x acts diagonally on the left side of (1.3) and only through the Tate twists Cx(—7)

on the right side of (1.3).
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For an analogy to other two comparison theorems, let us rewrite (|1.3]) as

Hg (X%, Qp) ®q, Bur & ( @ H'(X, QJ);/K)) ®K Bur

i+j=n
where Byt := @ Cgk(j) is the Hodge-Tate period ring. By a theorem of Tate and Sen, we
JEL
have BEIT( = K. Hence we obtain an isomorphism of finite dimensional graded K-vector

spaces
Tk ~ ; i
(Hi (X7 Qp) ®g, Bur) ™ = P H'(X, X0,
i+j=n
which allows us to recover the Hodge numbers from the I'g-representation on HJ (X4, Qp).
Next we discuss the comparison theorem between étale cohomology and de Rham coho-
mology. Recall that, for a proper smooth C-scheme Y of dimension d, we have a comparison
isomorphism
H"(Y(C),Q) ®q C= Hir(Y/C) (1.4)

given by Poincare duality and the “period paring”
HJ(Y(C)/C) x Hagn(Y(C),C) — C, (@,T) = / o.
r

One may hope to obtain a p-adic analogue of (1.4) by tensoring both H} (X%, Q,) and
Hlz (X/K) with an appropriate “period ring”. Fontaine [Fon82] formulated this idea into a
conjecture using his construction of a ring Bqr that satisfies the following properties:

(1) Bgr is equipped with a filtration such that the associated graded ring is Byr.
(2) Bgr is endowed with an action of I'x such that ng =K.

Below is a precise statement of this conjecture, which is now a theorem commonly referred to
as the p-adic de Rham comparison isomorphism.

Theorem 1.2.2 (Faltings [Fal88]). For a proper smooth variety X over K, there is a canon-
ical isomorphism

Hz( X7 Q) @, Bar = Hig(X/K) @K Bar (1.5)
compatible with I i -actions and filtrations.

Remark. By construction, the de Rham cohomology group H; (X/K) is endowed with the

Hodge filtration whose associated graded K-space is the Hodge cohomology EB H i(X , Qﬂf / )
i+j=n
The filtration on the right side of (|1.5)) is given by the convolution filtration.

An important consequence of Theorem is that one can recover the de Rham coho-
mology H (X/K) from the I'g-representation on HZ (X7, Q,) by

(HE (X7, Qp) ®0, Bar)' ™ = Hi(X/K).

Moreover, one can recover Theorem from Theorem by passing to the associated
graded K-vector spaces.

However, Theorem m (or Theorem does not provide any way to recover the I'g-
representation on Hf (X7, Qp). It is therefore natural to seek for a refinement of Hj, (X/K)
which recovers the I'i-representation on Hf (X%, Qp). Grothendieck conjectured that, when
X has good reduction, such a refinement should be given by the crystalline cohomology in
the following sense:
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Conjecture 1.2.3 (Grothendieck [Gro74]). Let k be the residue field of Ok. Denote by
W (k) the ring of Witt vectors over k, and by Ky its fraction field. There should exist a (purely
algebraic) fully faithful functor D on a category of certain p-adic Galois representations such
that

D(HE( X5, Qp)) = Hiis(X/W (k) @w i) Ko
for all proper smooth variety X with a proper smooth integral model X over Ok .

Remark. The functor D in Conjecture has become to known as the Grothendieck
mysterious functor.

It is worthwhile to mention that Conjecture [1.2.3|is motivated by the dictionary that we
described in Recall that, for an elliptic curve E over @, with good reduction, we discussed
how the I'g,-representation on V,,(E) is determined by the associated filtered isocrystal. We
may regard this dictionary as a special case of the Grothendieck mysterious functor, as V,(E)
and the associated filtered isocrystal are respectively identified with the dual of H, gt(E@, Qp)
and HY; (&, /Zy) ®z, Qp. The key insight of Grothendieck was that there should be a way

cris
to go directly from H}, (E@, Qp) to Hi (&, /Zy) ®7, Qp without using p-divisible groups.

cris

Fontaine [Fon94] reformulated Conjecture in terms of a comparison isomorphism
between étale cohomology and crystalline cohomology. His idea is to construct another period
ring Be;is that satisfies the following properties:

(1) Beis is equipped with an action of I' such that Bgfs = K.
(2) There is a Frobenius-semilinear endomorphism ¢ on Beyis.

(3) There is a natural map
Beris R K, K — Bgr
which induces a filtration on B from the filtration on Byg.

The endomorphism ¢ in is referred to as the Frobenius action on B.s. Fontaine’s conjec-
ture is now a theorem, which we state as follows:

Theorem 1.2.4 (Faltings [Fal88|). Suppose that X has good reduction, meaning that it has
a proper smooth model X over Ok . There exists a canonical isomorphism

H?t(XFa Qp) ®Qp Beris = ?ris(Xk/W(k))[l/p] ® Ko Beris
compatible with Ik -actions, filtrations, and Frobenius actions.

Remark. By construction, the crystalline cohomology H (X,/W (k)) carries a natural
Frobenius action. Moreover, the Hodge filtration on Hj;(X/K) induces a filtration on

H?. (X, /W (k))[1/p] via the comparison isomorphism
aris (X /W (K))[1/p] ©ry K = Hig (X/K).
By Theorem [1.2.4] we have an isomorphism

n r ~ n
(Hét (va Qp) ®Qp BCYiS) = crls(Xk/W(k))[l/p]
With some additional work, we can further show that the I'g-action on HZ (X3, Q)) can be
recovered from H. (X,/W(k))[1/p] by taking the filtration and the Frobenius action into

account. In fact, the mysterious functor in Conjecture turns out to be
D(V) == (V ®q, Beris)' ©

However, we still need to specify the source and the target categories such that D is fully
faithful. The answer turns out to come from the interplay between the arithmetic and the
geometric perspectives, as we will see in the next subsection.
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1.3. The interplay via representation theory

The Grothendieck mysterious functor, which we have yet to give a complete description,
is an example of various functors that link the arithmetic side and the geometric side of p-adic
Hodge theory. Such functors provide vital means for studying p-adic Hodge theory via the
interplay between the arithmetic and geometric perspectives.

Here we describe a general formalism due to Fontaine for constructing functors that con-
nect the arithmetic and geometric sides of p-adic Hodge theory. Let Repg, (T'k) denote the
category of p-adic representations of I'i for a p-adic field K. For a p-adic period ring B, such
as Bur, Bgr or Beis as introduced in the preceding subsection, we define

Dg(V) = (V ®q, B)'® for each V' € Repg, (T'k)-
We say that V' € Repg, (I'x) is B-admissible if the natural morphism
ay : Dp(V) ® e B— V ®q, B
is an isomorphism. Let Rep(gp (Tk) C Repg, (T'x) be the full subcategory of B-admissible

representations. Then Dp defines a functor from Repgp (T'k) to the category of finite dimen-

sional vector spaces over B'K with some additional structures. Here the additional structures
that we consider for the target category reflect the structure of the ring B, as indicated by
the following examples:

(a) The target category of Dp, is the category of finite dimensional graded K-spaces,
reflecting the graded algebra structure on Byr.

(b) The target category of Dp,, is the category of finite dimensional filtered K-spaces,
reflecting the filtration on Bgg.

(c) The target category of Dp_ is the category of finite dimensional filtered Ko-spaces
with a Frobenius-semilinear endomorphism, reflecting the filtration and the Frobe-
nius action on Bgs.

In particular, we have a complete description of the Grothendieck mysterious functor given
by Dp,,,.. We also obtain its fully faithfulness from the following fundamental result:

Theorem 1.3.1 (Fontaine [Fon94]). The functors Dp,.., Dp,y,, and Dp
faithful. Moreover, the functor Dp_,. s fully faithful.

Remark. We will see in Chapter [[1I) that the first statement of Theorem is (almost) a
formal consequence of some algebraic properties shared by Byr, Bqr and Beyis.

are all exact and

cris

Note that, for each B = Byr, Bgr, or Beis, the definition of B-admissibility is motivated
by the corresponding comparison theorem from the preceding subsection, while the target
category of the functor Dp consists of semilinear algebraic objects that arise in the arith-
metic side of p-adic Hodge theory. In other words, the functor Dp relates a certain class of
“geometric” p-adic representations to a class of semilinear algebraic objects that carry some
arithmetic information. Hence we can consider Fontaine’s formalism as a general framework
for connecting the following themes:

(1) Study of the geometry of a proper smooth variety over a p-adic field via the Galois
action on the étale cohomology groups.

(2) Construction of a dictionary that relates certain p-adic representations to various
semilinear algebraic objects.

In fact, this tidy connection provided by Fontaine’s formalism forms the backbone of classical
p-adic Hodge theory.
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2. A first glimpse of the Fargues-Fontaine curve

In this section, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which serves as the fundamental curve of p-adic Hodge theory.
Our goal for this section is twofold: building some intuition about what this object is, and
explaining why this object plays a pivotal role in modern p-adic Hodge theory.

2.1. Definition and some key features

The Fargues-Fontaine curve has two different incarnations, namely the schematic curve
and the adic curve. In this subsection, we will only consider the schematic curve, as we don’t
have a language to describe the adic curve. The two incarnations are essentially equivalent
due to a GAGA type theorem, as we will see in Chapter

Throughout this section, let us restrict our attention to the case K = Q,, for simplicity.
We denote by F' the completion of the algebraic closure of F,((u)). Recall that Fontaine
constructed a p-adic period ring Beis which is equipped with a I'g,-action and a Frobenius

+

semilinear endomorphism . There is also a subring B of B with the following properties:

cris
(i) B, is stable under ¢ with (BX.)?=! ~ Q,.

(ii) there is an element t € Bt. with Beis = B [1/t] and ©(t) = pt.

cris cris

Definition 2.1.1. The schematic Fargues-Fontaine curve (associated to the pair (Qp, F')) is

defined by
X := Proj (@(B;is)‘p:pn)

n>0

Note that X can be regarded as a Q,-scheme by the property |(i)|of B, . However, as we

will see in a moment, the scheme X is not of finite type over Q,. In particular, X is not a
curve in the usual sense, and not even a projective scheme over Q.

Nonetheless, the scheme X is not completely exotic. In fact, X is geometrically akin to
the complex projective line ]P’(lC in many aspects.

Theorem 2.1.2 (Fargues-Fontaine [FF18]). We have the following facts about the Fargues-
Fontaine curve X :

(1) As a Qp-scheme, X is noetherian, connected and reqular of dimension 1.

(2) X is a union of two spectra of Dedekind domains.

(8) X is complete in the sense that the divisor of every rational function on X has degree
zero.

(4) Pic(X) ~ Z.

Remark. The statements and together suggest that X behaves almost as a proper
curve, thereby justifying the use of the word “curve” to describe X.

We can also describe X as an affine scheme of a principal domain plus “a point at infinity”,
in the same way as we describe PL as Spec (C[z]) plus a point at infinity. More precisely, for
some “preferred” closed point co € X we have identifications

X — {oo} = Spec (B.) and @ = Bjx
where B, := B! and B(;FR is the ring of integers of Bqr. The fact that B, is a principal

cris
ideal domain is due to Fontaine.

Remark. The above discussion provides a geometric description of the period ring Byg.
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2.2. Relation to the theory of perfectoid spaces

The Fargues-Fontaine curve turns out to have a surprising connection to Scholze’s theory
of perfectoid spaces. In this subsection, we describe this connection after recalling some basic
definitions and fundamental facts about perfectoid fields.

Definition 2.2.1. Let C' be a nonarchimedean field of residue characteristic p.
(1) C is called a perfectoid field if it satisfies the following conditions:
(i) its valuation is nondiscrete,
(ii) the p-th power Frobenius map on O¢/p is surjective.
(2) If C is a perfectoid field with valuation |- |, we define the tilt of C' by
¢’ := lim C
TP
which carries a ring structure with a valuation | - |b as follows:
(a) (a-b)n := anbn,
(b) (a+b)n = n}ilnoo(am-i-n + bm+n)pm7
() laf = Jao].
Remark. It is not hard to see that C” is a perfectoid field of characteristic p.
Example 2.2.2. The p-adic completion C, of @p is a perfectoid field with C? ~ F.

The theory of perfectoid fields (and perfectoid spaces) has numerous applications in p-
adic Hodge theory. As a key example, we mention Scholze’s generalization of Theorem [[.2.2
(and Theorem to the category of rigid analytic varieties. Here we state one of the
fundamental results for such applications, known as the tilting equivalence.

Theorem 2.2.3 (Scholze [Sch12]). Let C be a perfectoid space.
(1) Every finite extension of C is a perfectoid field.

(2) The tilting operation induces an equivalence of categories
{ finite extensions of C'} «~— { finite extensions of C° } .

(8) There is an isomorphism I'c ~ T of absolute Galois groups.

An amazing fact is that, gievn a characteristic p perfectoid field F', the Fargues-Fontaine
curve X parametrizes the characteristic 0 untilts of F', which are pairs (C,¢) consisting of
a characteristic 0 perfectoid field C' and an isomorphism ¢ : C* ~ F. Note that there is
an obvious notion of isomorphism for untilts of F'. In addition, the p-th power Frobenius
automorphism ¢p of F' acts on untilts of F' by ¢p - (C, 1) :== (C,ppr o).

Theorem 2.2.4 (Fargues-Fontaine [FF18]). For every closed point x € X, the residue field
k(z) is a perfectoid field of characteristic 0 with k(av)b ~ F'. Moreover, there is a bijection

{ closed points of X } «— { @p-orbits of characteristic 0 untilts of F}
given by x — (k(z), k‘(m)b ~ F).
Remark. Theorem [2.2.4] implies that X is not of finite type over Q,.

This moduli interpretation of the Fargues-Fontaine curve is one of the main inspirations
for Scholze’s theory of diamonds, which is a perfectoid analogue of Artin’s theory of algebraic
spaces. In fact, many perfectoid spaces or diamonds that arise in p-adic geometry have moduli
interpretations involving (vector bundles on) the Fargues-Fontaine curve.
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2.3. Geometrization of p-adic Galois representations

Let us now demonstrate how the Fargues-Fontaine curve provides a way to geometrically
study p-adic Galois representations. The geometric objects that we will consider are as follows:

Definition 2.3.1. Let us fix a closed point co € X.

(1) A vector bundle on X is a locally free O x-module of finite rank.
(2) A modification of vector bundles at 0o is a tuple (€, F,i) where
e £ and F are vector bundles on X,

®i:&|x (=} = F|x—{0} is an isomorphism outside co.

We will see in Chapter [[V] that vector bundles on the Fargues-Fontaine curve admit a
complete classification. The following theorem summarizes some of its key consequences.

Theorem 2.3.2 (Fargues-Fontaine [FF18]). There is a functorial commutative diagram

{ isocrystals over F, } —=— { vector bundles on X }

I I

{ filtered isocrystals } { modifications of }

over IF,, vector bundles on X
where the vertical maps are forgetful maps defined by (N,Fil*(N)) — N and (€, F,i) — £.

Now recall that Fontaine constructed a fully faithful functor
) { B is-admissible p-adic
Bcris °

representations of T, } — { filtered isocrystals over I, } .

If we compose Dp . with the base change functor to F, and the bottom map in Theorem
2.3.2, we obtain a functor

B is-admissible p-adic modifications of

. _—

representations of I'g, vector bundles on X
Hence we can study B.js-admissible p-adic Galois representations by purely geometric objects,
namely modifications of vector bundles on X. As an application, we obtain the following
fundamental result:

Theorem 2.3.3 (Colmez-Fontaine [CF00]). Let N* := (N,Fil*(N)) be a filtered isocrystal
over F,. We denote by N* = ((N),Fil*(N)) the associated filtered isocrystal over F, (0b-
tained by base change), and by (S(W.),}"(N.),i(w.)) its image under the bottom map in
Theorem . Then N°® is in the essential image of Dp_,. if and only if the vector bundle
F(N®) is trivial (i.e., isomorphic to OY" for some n).

Remark. Since Dp_ . is fully faithful, its essential image gives a purely algebraic category
which is equivalent to the category of B.is-admissible representations.

Theorem [2.3.3] is commonly stated as “weakly admissible filtered isocrystals are admis-
sible”. It was initially proved by Colmez-Fontaine [CFO00] through a very complicated and
technical argument. In Chapter [V], we will provide a very short and conceptual proof of
Theorem [2.3.3] The key point of our proof is that the left inverse Vg, of Dp_, can be
cohomologically realized by the following identity:

VB (N®) ~ H (X, F(N")).

cris cris

cris
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Theorem has a couple of interesting implications as follows:
(1) Beris-admissibility is a “geometric” property.
(2) Beis-admissibility is insensitive to rep/la\cing the residue field I, by E), which amounts
to replacing the ground field Q, by Qp".

These two implications are closely related since base change of the ground field Q, to @;;\n
can be regarded as “passing to the geometry” via the bottom map in Theorem [2.3.2

Remark. The Fargues-Fontaine curve also provides a way to geometrically study f-adic Ga-
lois representations. In fact, Fargues [Farl6) initiated a remarkable problem called the ge-
ometrization of the local Langlands correspondence, which aims to realize the local Langlands
correspondence as the geometric Langlands correspondence on the Fargues-Fontaine curve.






CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section we develop some basic theory of finite flat group schemes, in preparation
for our discussion of p-divisible groups in Our primary reference is Tate’s article [Tat97].

Throughout this section, all rings are assumed to be commutative.

1.1. Basic definitions and properties
We begin by recalling the notion of group scheme.

Definition 1.1.1. Let S be a scheme. A group scheme over S is an S-scheme G along with
morphisms

e m: G xg G — G, called the multiplication,
e ¢: 5 — @G, called the unit section,
e i : G — @, called the inverse,

that fit into the following commutative diagrams:

(a) associativity axiom:

GXSGXSG (m.id) GXSG
J/(id,m) lm
G xgG m G
(b) identity axiom:
GxgS ———— G —24 5@ SxsG ——— G —4 5@
GXSG GXSG

(c) inverse axiom:

In other words, a group scheme over S is a group object in the category of S-schemes.

Lemma 1.1.2. Given a scheme S, an S-scheme G is a group scheme if and only if the set
G(T) for any S-scheme T carries a functorial group structure.

PrOOF. This is immediate by Yoneda’s lemma. O

17
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Definition 1.1.3. Let G and H be group schemes over a scheme S.
(1) A morphism G — H of S-schemes is called a homomorphism if for any S-scheme T
the induced map G(T') — H(T) is a group homomorphism.

(2) The kernel of a homomorphism f : G — H, denoted by ker(f), is a group scheme such
that ker(f)(T") for any S-scheme T is the kernel of the induced map G(T') — H(T).
Equivalently, by Lemma ker(f) is the fiber of f over the unit section of H.

Example 1.1.4. Let G be a group scheme over a scheme S, and let n be a positive integer.
The multiplication by n on G, denoted by [n]g, is a homomorphism G — G defined by g — g".

In this section, we are mostly interested in affine group schemes over an affine base. Let
us generally denote the base ring by R.

Definition 1.1.5. Let G = Spec (A4) be an affine group scheme over R. We define

e the comultiplication p: A — AQpg A,
e the counit e: A — R
e the coinverse 1 : A — A,

to be the maps respectively induced by the multiplication, unit section, and inverse of G.

Example 1.1.6. We present some important examples of affine group schemes.

(1) The additive group over R is a scheme G, := Spec (R[t]) with the natural additive
group structure on G,(B) = B for each R-algebra B. The comultiplication, counit,
and coinverse are given by

pt) =tel+1ot, et)=0, ot)=—t.

(2) The multiplicative group over R is a scheme G,, := Spec (R[t,t!]) with the nat-
ural multiplicative group structure on G,,(B) = B* for each R-algebra B. The
comultiplication, counit, and coinverse are given by

py=tet,  et)=1, u)=t"

(3) The n-th roots of unity is a scheme pu, := Spec (R[t]/(t" — 1)) with the natural
multiplicative group structure on u,(B) = {be€ B:b" =1} for each R-algebra B.
In fact, we can regard p, as a closed subgroup scheme of G,, by the map R[t,t~!] —
R[t]/(t™ — 1) with the comultiplication, counit, and coinverse as in

(4) If R has characteristic p, then we have a group scheme «, := Spec (R[t]/t?) with the
natural additive group structure on o,(B) = {be B: b’ =0} for each R-algebra
B. In fact, we can regard «y, as a closed subgroup scheme of G, by the map R[t] -
R[t]/(tP) with the comultiplication, counit, and coinverse as in |(1)|

(5) If A is an abelian scheme over R, its n-torsion subgroup A[n] := ker([n]4) is an affine
group scheme over R since [n]4 is a finite morphism.

(6) If M is an abstract group, the constant group scheme on M over R is a scheme
M = H Spec (R) ~ Spec (A), where A ~ H R is the ring of R-valued functions

meM meM
on M, with the natural group structure (induced by M) on
M (B) = { locally constant functions Spec(B) — M }

for each R-algebra B. Note that A ®pr A is identified with the ring of R-values
functions on M x M. The comultiplication, counit, and coinverse are given by

p(f)m,m') = fmm'),  e(f) = f(a), o) (m) = f(m™).
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.7. Let G = Spec (A) be an affine group scheme over R. We say that G is a
(commutative) finite flat group scheme of order n if it satisfies the following conditions:
(i) G is locally free of rank n over R; that is, A is a locally free R-algebra of rank n.
(ii) G is commutative in the sense of the following commutative diagram

G xpG W22 oG
G

where m denotes the multiplication of G.

Remark. As a reality check, we have the following facts:
(1) G satisfies (1) if and only if the structure morphism G — Spec (R) is finite flat.
(2) G satisfies if and only if G(B) is commutative for each R-algebra B.

However, even if G is finite flat, G(B) can be infinite for some R-algebra B such as an infinite
product of R.

Example 1.1.8. Some of the group schemes that we introduced in Example are finite
flat group schemes, as easily seen by their affine descriptions.

(1) The n-th roots of unity u, is a finite flat group scheme of order n.

(2) The group scheme «, is a finite flat group scheme of order p.

(3) If A is an abelian scheme of dimension g over R, its n-torsion subgroup A[n] is a
finite flat group scheme of order n?9.

(4) If M is an abelian group of order n, the constant group scheme M is a finite flat
group scheme of order n.

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without proof.

Theorem 1.1.9 (Grothendieck [Gro60]). Let G be a finite flat R-group scheme, and let H
be a closed finite flat subgroup scheme of G. Denote by m and n the orders of G and H over
R, respectively. Then the quotient G/H exists as a finite flat group scheme of order m/n over
R, thereby giving rise to a short exact sequence of group schemes

0—H-—G— G/H— 0.

Theorem 1.1.10 (Deligne). Let G be a finite flat group scheme of order n over R. Then
[n] annihilates G; in other words, it factors through the unit section of G.

Remark. It is unknown whether Theorem[I.T.10lholds if G is not assumed to be commutative.

We also note that finite flat group schemes behave well under base change.

Lemma 1.1.11. Let G = Spec (A) be a finite flat group scheme over R. For any R-algebra
B, Gp is a finite flat group scheme over B.

PROOF. Let u, €, and ¢ be the comultiplication, counit, and coinverse of G, respectively. It
is straightforward to check that Gp = Spec (A®p B) is a group scheme with comultiplication,
counit and coinverse given by p® 1,e ® 1, and ¢ ® 1. The finite flatness of Gp is immediate
from the finite flatness of G. Il
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1.2. Cartier duality

In this subsection, we discuss an important notion of duality for finite flat group schemes.

Definition 1.2.1. Let G = Spec(A) be a finite flat group scheme over R. We define the
Cartier dual of G to be an R-group scheme G with

GY(B) = Homp gp (G5, (Gn)B) for each R-algebra B,
where the group structure is induced by the multiplication map on (G,,)5.
Remark. We may identify GV = Hom(G,G,,) as a sheaf on the big fppf site.
Lemma 1.2.2. Let G be a finite flat R-group scheme such that [n]g = 0. Then we have
GY(B) = Homp.4p (G, (1in)B)-

PROOF. The assertion follows immediately by observing i, = ker([n]g,,)- O

Theorem 1.2.3 (Cartier duality). Let G = Spec (A) be a finite flat group scheme of order n
over R. We let u,e, and v respectively denote the comultiplication, counit, and coinverse of
A. In addition, we let s : R — A be the structure morphism, and ma : AQr A — A be the
ring multiplication map. Define AV := Hompg_mea(A, R) to be the dual R-module of A.

(1) The dual maps p” and €' define an R-algebra structure on AY.

e have an identification == Spec with mY,s", and v” as the comultiplica-
2) We h dentification GV = Spec (AY) with mYy, s¥, and ¥ as th ltipli
tion, counit, and coinverse.

(3) GV is a finite flat group scheme of order n over R.

(4) There is a canonical isomorphism (GV)Y = G.

PROOF. The proof of is straightforward and thus omitted here.

Let us now prove It is not hard to verify that GV := Spec (AY) carries a structure of
groups scheme with mY, s¥, and ¢V as the comultiplication, counit, and coinverse. Let B be
an arbitrary R-algebra. We wish to establish a canonical isomorphism

GY(B) = GY(B). (1.1)
Let us write up = pu® l,eg:=€® 1, and tp : ¢t ® 1 for the comultiplication, counit, and

coinverse of Ap := A ®pr B. We also write sg : s ® 1 for the structure morphism B — Ap.
By the group scheme axioms, we have

(ep ®id) o pup =1id and (tp,id) o up = sp o ep. (1.2)
Now we use Definition and the affine description of G, given in Example to obtain
GY(B) = Homp.grp(Gp, (Gm) )
= { f € Homp.ag(Blt,t '], Ap) : pp(f(1) = f(t) @ f(t),en(f(t) = 1L,up(f(t)) = f(t) " }

where the conditions on the last set come from compatibility with the comultiplications,
counits, and coinverses on G and (G,,). Furthermore, an element of Hompg(B[t,t~1], Ap)
is determined by its value at ¢, which must be a unit in Ag since ¢ is a unit. We thus obtain

G'(B)={ue A :pp(u) =u®uep(u)=1,1p(u) =u'}.

Moreover, by (1.2) every element u € A} with pp(u) = u ® u must satisfy eg(u) = 1 and
tg(u) = u~!. Therefore we find an identification

G'(B)={ue A :puplu)=u®u}. (1.3)
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Meanwhile, by we have a B-algebra structure on AY, := AY ®p B defined by pf; :=

p’ @1 and €} := ¢’ @ 1. We also have an identification
GY(B) = Hompg ag(A", B) 2 Homp a1s(AY ®g B, B). (1.4)
Let mp : B®p B — B be the ring multiplication map on B. Note that Homp_14(AY @ B, B)
is the set B-module homomorphisms A ® g B — B through which u}; and €}, are compatible
with mp and idp, respectively. Taking B-duals, we identify this set with the set of B-module
homomorphisms B — A ®g B = Ap through which mg and idé are compatible with up
and ep. Moreover, the dual maps m} and id} send 1 to 1 ® 1 and 1, respectively. Since

every B-module homomorphism B — Apg is determined by its value at 1, we have obtained
an identification

Homp 44(AY @ B,B) 2 {u € Ap : pup(u) =u®@u,eg(u) =1}.
Then by we find
Homp a14(A4" @ B, B) = { ue A pp(u) =u®u },
which yields an identification
G'(B)2{uecAp:pp(u) =u®u} (1.5)

by . We thus obtain the desired isomorphism by and , thereby completing
the proof of

Now [(3)| follows from since AV is a free R-module of rank n by construction. We also
deduce [(4)| from [(2)| using the canonical isomorphism (AY)Y = A.

We now exhibit some important examples of Cartier duality.
Lemma 1.2.4. Given a finite flat group scheme G over R, the dual map of [n]q is [n]gv.

PROOF. For an arbitrary R-algebra B, the dual map of [n]e sends each f € GY(B)
Homp g1y (G, (Gm)B) to f o [n]a = [n]av(f)-

Proposition 1.2.5. For every positive integer n, we have (Z/nZ)" =~ pu,.

o

PROOF. By the affine description given in Example we can write Z/nZ ~ Spec (A)
n—1
where A ~ @ Re; with the comultiplication, counit, and coinverse given by
i=0

1 fori=0
N(ei) = Z ep & eq, f(ei) = { , L(ei) =e_;.

proi 0 otherwise

Let my : AQr A — A and s : R — A respectively denote the ring multiplication map and
structure morphism. Let { e } be the dual basis for A" := Hompg mod(4, R) such that

o
eﬂej):{ o

0 otherwise.

By Theorem [1.2.3] we have an R-algebra structure on AV, defined by " and €V, and a group
scheme structure on (Z/nZ)" = Spec (AY) with mY, s", and ¢ as the comultiplication, counit,
and coinverse. In addition, it is not hard to see that the dual maps are given by

pilef @ef)=ely, () =eg, mile))=¢/@e], s'(e:) =1, '(e]) =e’;.

Hence, by the affine description given in Example the map AV — R[t]/(t" — 1) given
by e + ' induces an isomorphism of R-group schemes (Z/nZ)" ~ p, as desired. O
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Proposition 1.2.6. Suppose that R has characteristic p. Then the R-group scheme ay, is
self-dual.

PROOF. By the affine description given in Example [1.1.6] we have oy, = Spec (R[t]/(tP))
with the comultiplication, counit, and coinverse given by

()= 3 <;>tp®tq, ew')_{l Hi=0 ) = ()

i 0 otherwise

Let us set A := R[t]/(t?) for notational simplicity. Let my : AQr A — Aand s: R — A
respectively denote the ring multiplication map and structure morphism. Let { f; } be the
dual basis for AV := Hompg_p0q(4, R) such that

fi(tj)—{l S

0 otherwise.

By Theorem [1.2.3 we have an R-algebra structure on AV, defined by 1V and €V, and a group
scheme structure on o) = Spec (AY) with m},s", and +" as the comultiplication, counit, and
coinverse. In addition, it is not hard to see that the dual maps are given by

p(fi® f;) = <h:]> firs, €'(1)=0,

()= S fe fy sv<fi)={1 HE=0 vy = (0

vl 0 otherwise

Hence the ring homomorphism A" — A given by f; — t*/i! induces an isomorphism of group
schemes oz;)/ ~ qy as desired. O
Remark. When R has characteristic p, the underlying schemes of y,, and «,, are isomorphic
as we have a ring isomorphism R[t](t’) — R[t]/(t? — 1) given by t — t + 1. Propositions
and together show that they are not isomorphic as group schemes.

Proposition 1.2.7. Let f : A — B be an isogeny of abelian schemes over a ring R. Then
the kernel of the dual map f" is naturally isomorphic to the Cartier dual of ker(f).

PROOF. By definition, we have an exact sequence

Q—>ker(f)—>.Ai>B—>Q

which gives rise to a long exact sequence
0 — Hom(B, G,,) — Hom(A,G,,) — Hom(ker(f),G,,) — Ext'(B,G,,) — Ext'(A,G,,).

Note that the first two group schemes are trivial; in fact, abelian schemes are proper and thus
admit no nontrivial maps to any affine scheme. We also have identifications

Hom(ker(f),Gm) = ker(f)Y,  Ext'(B,Gn) = BY,  Ext'(A,Gp) =AY

where A" and B denote the dual abelian schemes of A and B, respectively. Furthermore, we
may identify the last arrow in the above sequence as f¥. We thus obtain an exact sequence

0 — ker(f)Y — BY EAR A
which yields the desired isomorphism ker(f)" = ker(f"). O

Corollary 1.2.8. Given an abelian scheme A over a ring R with the dual abelian scheme
AV, we have a natural isomorphism Aln]Y = AV[n].
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Let us conclude this subsection by the exactness of Cartier duality.

Lemma 1.2.9. Let f: H — G be a closed embedding of R-group schemes. Then we have
ker(f¥) = (G/H)Y, where fV denotes the dual map of f.

PROOF. For each R-algebra B we get

ker(f¥)(B) = ker (HomB_grp(GB7 (Gm)B) N Homp.gp(Hp, (Gm)B))
> Homp grp((G/H) 5, (Gm)8) = (G/H)" (B)
by the universal property of the quotient group scheme Gg/Hp = (G/H)p. O
Proposition 1.2.10. Given a short exact sequence of finite flat R-group schemes
0—G —G—G" —0,
the Cartier duality gives rise to a short exact sequence
0—G"W —-GY —aGv —0.

PROOF. Let f and g respectively denote the maps G’ — G and G — G” in the given short
exact sequence, and let fV and gV denote their dual maps. Injectivity of g is easy to verify
using surjectivity of g and Definition In addition, Lemma yields ker(fV) = G"V.
Hence it remains to prove that fV is surjective. Since G"Y = ker(fV) is a closed subgroup of
GV, we have a quotient GV/G"" as a finite flat group scheme by Theorem [1.1.9] Then f
gives rise to a homomorphism GY/G"”Y — G'V. This is an isomorphism since its dual map

G — (GV/G") = ker((g")") = ker(g)

is an isomorphism by the given exact sequence, where we use Lemmal[T.2.9]for the identification
(GY/G"™)V =2 ker((g¥)Y). Hence we obtain surjectivity of fV as desired. O

1.3. Finite étale group schemes

In this subsection, we discuss several basic facts about finite étale group schemes. Such
group schemes naturally arise in the study of Galois representations by the following fact:

Proposition 1.3.1. Assume that R is a henselian local ring with mazimal ideal m and residue
field k := R/m. There is an equivalence of categories

{ finite étale group schemes over R} — { finite abelian groups with a continuous I'y-action }
defined by G — G(k°P).

PROOF. Let m : Spec (k) — Spec(R) denote the geometric point associated to m €
Spec (R). ThenI'y, = Gal(k*P/k) is identified with the étale fundamental group m; (Spec (R), m).
Hence we have an equivalence of categories

{ finite étale schemes over R } — { finite sets with a continuous I';-action }
defined by T +— T(k*P). The desired equivalence follows by passing to the corresponding
categories of commutative group objects. O

Remark. It is not hard to see that the functor in Proposition [1.3.1] is compatible with the
notion of order in both categories. Hence Proposition provides an effective way to study
finite étale group schemes in terms of finite groups.

Corollary 1.3.2. If R is a henselian local ring with the residue field k, the special fiber functor
yields an equivalence of categories

{ finite étale group schemes over R} — { finite étale group schemes over k } .
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Let us now explain a very useful criteria for étaleness of finite flat group schemes.

Definition 1.3.3. Let G = Spec(A) be an affine group scheme over R. We define the
augmentation ideal of G to be the kernel of the counit € : A — R.

Lemma 1.3.4. Let G = Spec(A) be an affine group scheme over R with the augmentation
ideal I. Then A~ R® I as an R-module.

PROOF. The assertion follows from the observation that the structure morphism R — A
splits the exact sequence 0 — [ — A —— R — 0. U

Proposition 1.3.5. Let G = Spec (A) be an affine group scheme over R with the augmenta-
tion ideal I. Then we have I/I* @r A~ Qu/p and I/1* ~ Q4 /p ©4 A/I.

PROOF. Let us write m, e and ¢ respectively for the multiplication, unit section and inverse
of G. We have a commutative diagram

. -1
G xpG (g,h)—(g,9h") G xpG
k A)

G

where the horizontal map can be also written as (pry,m)o(id, 7). We verify that the horizontal
map is an isomorphism by writing down the inverse map (z,y) — (z,y 'z).

Let us now consider the induced commutative diagram on the level of R-algebras

ARQrA+——— ARRrA

x®yb—% Aﬂ—)ﬂf -(y)

where € denotes the counit of G. Let J denote the kernel of the left downward map. Then
we have an identification
Qup=J/J (1.6)
Moreover, as Lemma, yields a decomposition
ARrRA~ARrR®ARRI,

we deduce that the kernel of the right downward map is A ® g I. Hence the horizontal map
induces an isomorphism between the two kernels J ~ A®grI, which also yields an isomorphism
J? ~ (A®r1)? =2 A®g I2. We thus have
JIJ? = (A@rD)/(A@rI?) = A®g (I/17),
thereby obtaining a desired isomorphism Q4,p ~ A ®g (I/1 2) by (1.6). We then complete
the proof by observing
Qu/r®a (A/) = (I/1?) @ A) @4 AJT = (I/1?) @5 AJT ~ 1/

where the last isomorphism follows from the fact that A/I ~ R. O

Remark. The multiplication map on G defines a natural action on €4,z. We can geometri-
cally interpret the statement of Proposition [1.3.5] as follows:

(1) An invariant form under this action should be determined by its value along the unit
section, or equivalently its image in I/1°.

(2) An arbitrary form should be written as a function on G times an invariant form.
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Corollary 1.3.6. Let G = Spec(A) be a finite flat group scheme over R with the augment
ideal I. Then G is étale if and only if I = I°.

PROOF. Since G is flat over R, it is étale if and only if 24,5 = 0. Hence the assertion
follows from Proposition [1.3.5 O

We discuss a number of important applications of Corollary [I.3.6]

Proposition 1.3.7. Every finite flat constant group scheme is étale.

PRrROOF. Let M be a finite group. By the affine description in Example we have
M ~ Spec (EB Rei>
ieM
with the counit given by the projection to Rej,,. Hence the augment ideal of M is given by
I= P Re..
i1
Since I has its own ring structure, we find I = I?. Thus M is étale by Corollary O

Proposition 1.3.8. Assume that R is an algebraically closed field of characteristic p. Then
Z/pZ is a unique finite étale group scheme of order p. In particular, p, and oy, are not étale.

PRrROOF. Note that Z/pZ is étale by Proposition For uniqueness, we use Proposition

together with the fact that Z/pZ is a unique group of order p. The last statement then
follows by observing that j, and «a; are not isomorphic to Z/pZ for being nonreduced. O

Proposition 1.3.9. Let G be a finite flat group scheme over R. Then G is étale if and only
if the (scheme theoretic) image of the unit section is open.

PROOF. Let us write G = Spec (A) where A is a locally free R-algebra of finite rank. Let
I denote the augment ideal of G so that the (scheme theoretic) image of the unit section is
Spec (A/I). By Corollary G is étale if and only if I = I2. Tt is thus enough to show that
the closed embedding Spec (4/I) < Spec (A) is an open embedding if and only if I = I2.

Suppose that I = I?. By Nakayama’s lemma there exists an element f € A with f—1¢€ I
and fI = 0. Note that f is idempotent; indeed, we quickly check f2 = f(f —1)+ f = f. Now
consider the natural map A — Ay. This map is surjective since we have
;n:fi{-1:aff:;l for any a € A.
Moreover, as fI = 0, the last identity shows that I is contained in the kernel. Conversely,
for any element a in the kernel we have f™a = 0 for some n, or equivalently fa = 0 as f is
idempotent, and consequently see that a = —(f—1)a+ fa = —(f—1)a € I. We thus get a ring
isomorphism A/I = Ay, thereby deducing that the closed embedding Spec (A/I) — Spec (A)
is an open embedding.

For the converse, we now suppose that Spec (A/I) — Spec(A) is an open embedding.
Then it is a flat morphism, implying that the ring homomorphism A — A/I is also flat.
Hence we obtain a short exact sequence

0 —IRAA/l — AR A/l — A/T®4A/I — 0,
which reduces to
00— I/I? — AJT — AJT — 0
where the third arrow is the identity map. We thus deduce that I/I? = 0 as desired. U
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Theorem 1.3.10. Let G be a finite flat group scheme over R. If the order of G is invertible
mn R, then G is étale.

PROOF. Let us write G = Spec (A) where A is a locally free R-algebra of finite rank. As
usual, we let m, e, u, and € respectively denote the multiplication map, unit section, comulti-
plication, and counit of G. We have commutative diagrams of schemes

Spec(R) ——— G G—4 g

(6,6)l / (id,e) u(e 1d/\
GxprG GxpG

which induce the following commutative diagrams of R-algebras:

R+ A /P —|
6®ET / 1d®eHe®1d/ (17)
AQRRrA A®p A

Let I = ker(e) be the augmentation ideal of G, and let x be an arbitrary element in I.
Since €(xz) = 0, the first diagram in (1.7 implies u(x) € ker(e ® €). Moreover, since Lemma
yields a decomposition

ARpA~(ROrRR)®(I®rR)® (RRrI)® (I®rI)
as an R-module, we deduce that
ker(e®e)~ (I Qr R)® (R I)® (IR I).

Hence we have u(z) €a®1+1®b+ 1 ®pg I for some a,b € I. Then we find a = b = x using
the second diagram of ([1.7)), thereby deducing

wr)ex@l+1@x+1Qg1. (1.8)

We assert that [n]g for each n > 1 acts as multiplication by n on I/I?. For each n > 1,
let [n]a : A — A denote the R-algebra map induced by [n]e. We have commutative diagrams

G [n]e G A [n]a A
ﬂnucdwl /////;f/z [n”A®MT k////;///
G xrG A®RrA
The second diagram and together yield
[n)a(z) € [n — 1] a(z) + 2 + I for each x € I.

Since [1]4 = id 4, the desired assertion follows by induction.

Now we let m be the order of G. Since [m]g factors through the unit section of G by
Theorem [1.1.10} its induced map on Q4,p factors as Q4/p — Qp/p — Qa/r. As Qr/r =0,
we deduce that [m]g induces a zero map on Q4/p, and also on Q4 ®a A/I ~ I/I? by
Proposition On the other hand, as noted in the preceding paragraph [m]g acts as a
multiplication by m on I/I?, which is an isomorphism if m is invertible in R. Hence we have
I/I? = 0 if m is invertible in R, thereby completing the proof by Corollary O

Corollary 1.3.11. Fwvery finite flat group scheme over a field of characteristic 0 is étale.



1. FINITE FLAT GROUP SCHEMES 27
1.4. The connected-étale sequence

For this subsection, we assume that R is a henselian local ring with residue field k. Under
this assumption, we have a number of useful criteria for connectedness or étaleness of finite
flat R-group schemes.

Lemma 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

PRrOOF. This is immediate from a general fact as stated in [Stal, Tag 02GM]. O

Lemma 1.4.2. Let T be a finite scheme over R. Then the following conditions are equivalent:

(i) T is connected.
(ii) T is a spectrum of a henselian local finite R-algebra.

(i1i) The action of Ty, on T'(k) is transitive.
PROOF. Let us write T' =~ Spec (B) where B is a finite R-algebra. Since R is a henselian

local ring, we have
n
i=1

where each B; is a henselian local ring. Note that each T; := Spec(B;) corresponds to a

connected component of T'. Hence we see that|(i)[implies Conversely, implies|(i)| since
the spectrum of a local ring is connected.

Let k; denote the residue field of B; for each ¢. Then we have

n
T(E) = HomR_alg(B,E) = HHomk(k,,E)
i=1
where T, acts through k. Since each Homy(k;, k) is the orbit of the action of Ty, we deduce

the equivalence between and Il

Corollary 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

Remark. This is a special case of SGA 4 1/2, Exp. 1, Proposition 4.2.1, which says that
for every proper R-scheme the special fiber functor induces a bijection between the connected
components.

Definition 1.4.4. Given a finite flat group scheme G over R, we denote by G° the connected
component of the unit section.

Proposition 1.4.5. For a finite flat R-group scheme G, we have G°(k) = 0.

PROOF. As usual, we write G = Spec (A) with some free R-algebra A of finite rank. By
Lemma we have G° = Spec (A°) for some henselian local free R-algebra A° of finite
rank. As the unit section factors through G°, it induces a surjective ring homomorphism
A° — R. Denoting its kernel by J, we obtain an isomorphism A°/J ~ R, which induces an
isomorphism between the residue fields of A° and R. We thus find that

G°(k) = Homp a15(A°, k) = Homy (k, k) =0
as desired. O

Theorem 1.4.6. Let G be a finite flat group scheme over R. Then G° is a closed subgroup
scheme of G such that the quotient G := G/G° is étale, thereby giving rise to a short exact
sequence of finite flat group schemes

0—G° —G— G —0.
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PROOF. Propositionimplies that (G°xrG°) (k) = G°(k) x G°(k) is trivial. Therefore
G° xr G° is connected by Lemma [1.4.2

We assert that G° is a closed subgroup of G. By construction, the unit section of G factors
through G°. Moreover, as G° X p G° is connected, its image under the multiplication map is
a connected subscheme of GG containing the unit section, and thus lies in G°. Similarly, the
inverse of G maps G° into itself by connectedness. We thus obtain the desired assertion.

Since G° is a closed subgroup of G, the quotient G¢ = G /G® is a finite flat group scheme.
Its unit section G°/G° has an open image as the connected component G° is open in G by
the noetherian hypothesis on R. Hence we find that G¢! is étale by Proposition m thereby
completing the proof. O

Remark. We make several remarks about Theorem and its proof.

(1) Theoremessentially reduces the study of finite flat group schemes over R to two
cases, namely the connected case and the étale case. We have seen in the previous
subsection that finite étale group schemes are relatively easy to understand (in terms
of finite groups with a Galois action). Hence most technical difficulties for us will
arise in trying to understand (a system of) connected finite flat group schemes.

(2) Theorem also holds when G is not commutative. To see this, we only have to
prove that G° is a normal subgroup scheme of G. Let us consider the map
v:G°xgG— G

defined by (g,h) — hgh™'. Let H be an arbitrary connected component of G. As
G° xg H is connected by Lemma [1.4.2| and Proposition [1.4.5] its image under v is
a connected subscheme of G containing the unit section, and thus lies in G°. Since
G is a disjoint union of its connected component, we find that the image of v lies in
G°, thereby deducing the desired assertion.

(3) We present an alternative proof of the fact that G° x g G° is connected. By Corollary
connectedness of G° implies connectedness of G}. Moreover, the image of the
unit section yields a k-point in G7. Hence G}, is geometrically connected by a general
fact as stated in [Stal Tag 04KV]|. Then another general fact as stated in [Stal Tag
0385] implies that Gfj, Xgpec (1) G}, is connected. We thus deduce the desired assertion

by Corollary

Definition 1.4.7. Given a finite flat group scheme G over R, we refer to the exact sequence
in Theorem [1.4.6| as the connected-étale sequence of G.

Corollary 1.4.8. A finite flat scheme G is connected if and only if G(k) = 0.

ProOF. This follows from Lemma [1.4.2] Proposition [1.4.5] and Theorem [1.4.6 U

Corollary 1.4.9. A finite flat group scheme G over R is étale if and only if G° = 0.

PrROOF. If G° = 0, then G is étale by Theorem Conversely, if G is étale the (scheme
theoretic) image of the unit section is closed by definition and open by Proposition m
thereby implying that G° is precisely the image of the unit section. 0

Corollary 1.4.10. Let f : G — H be a homomorphism of finite flat R-group schemes with
H étale. Then f uniquely factors through G := G/G°.

PROOF. The image of G° should lie in H°, which is trivial by Corollary Hence the
assertion follows from the universal property of the quotient G** = G /G°. U
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Proposition 1.4.11. Assume that R = k is a perfect field. For every finite flat group k-
scheme G, the connected-étale sequence canonically splits.

PROOF. Let us write G := G/G° as in Theorem We wish to prove that the
homomorphism G — G admits a section. If k has characteristic 0, the assertion is obvious
by Corollary and Corollary Hence we may assume that & has characteristic p.

As usual, we write G' = Spec (A) with some free k-algebra A of finite rank. Let G™9 be the
reduction of G; in other words, G = Spec (4/n) where n denotes the nilradical of A. Since
k is perfect, the product of two reduced k-schemes is reduced by some general facts as stated
in [Stal Tag 0201] and [Stal, Tag 035Z]. In particular, G*? x; G*? must be reduced. Hence
its image under the multiplication map should factor through G*4. Similarly, the inverse of
G maps G* into itself by reducedness. In addition, the unit section of G factors through
G4 as k is reduced. We thus deduce that G™¢ is a closed subgroup of G.

Note that G™4 is étale for being finite and reduced over k. Hence it suffices to prove that
the homomorphism G — G¢' induces an isomorphism G™ ~ G*. We have an identification
G™4(k) by reducedness of k. Moreover, the homomorphism G — G induces an isomorphism
induces an isomorphism G(k) ~ G¢'(k) by Theorem and Corollary We thus find
that the homomorphism G4 ~ G* induces an isomorphism G™4(k) ~ G¢*(k) which is clearly
I',-equivariant. The desired assertion now follows by Proposition O

Remark. Interested readers can find an example of non-split connected-étale sequence over
a non-perfect field in [Pinl, §15].

Example 1.4.12. Let E be an elliptic curve over F,. By Theorem m the group scheme
E[p] admits a connected-étale sequence

0 — Elp]° — Elp] — E[p]* — 0.

Moreover, we have E[p|(F,) ~ E[p|*(F,) by Proposition m Hence Proposition m
implies that E[p]®* has order 1 when E is supersingular and order p when E is ordinary.
Let us now assume that E is ordinary. We have E[p]® ~ Z/pZ by Proposition and
thus obtain
pp = (Z/pZ)" — Elp]” =~ E"[p] ~ E[p|
by Proposition [T.2.5, Proposition [I.2.10, Corollary [1.2.§] and self-duality of E. Since p, is
of order p and not étale as noted in Proposition |1.3.8] it must be connected by Theorem

We thus have an embedding p, — E[p]°, which must be an isomorphism by order
consideration. Hence the connected-étale sequence for E[p] becomes

0 — pp — Elp] — Z/pZ — 0.
We thus find E[p] ~ p,, x Z/pZ by Proposition [1.4.11

Remark. If F is supersingular, it is quite difficult to describe the p-torsion subgroup scheme
E[p]. Note that E[p] must be a self-dual connected finite flat group scheme of order p? over
F,. It is known that the only simple objects in the category of finite flat group schemes over
F, are p,, oy, Z/pZ, and Z/VZ for all £ # p. In particular, o, is the only connected simple
object with connected Cartier dual. Hence E[p] should fit into an exact sequence

0 —ap — Efp] —ap — 0.

It turns out that E[p] is a unique self-dual finite flat group scheme over F, which arises as a
non-splitting self-extension of a,.
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https://stacks.math.columbia.edu/tag/035Z

30 II. FOUNDATIONS OF p-ADIC HODGE THEORY
1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p. We let o denote
the Frobenius endomorphism of k.

We introduce several crucial notions for studying finite flat group schemes over k.
Definition 1.5.1. Let T' = Spec (B) be an affine k-scheme.
(1) We define the Frobenius twist of T by T®) := T x}, , k. In other words, T®) fits into

the cartesian diagram

T®W) — T

| |

Spec (k) —— Spec (k)

where the bottom map is induced by o.

(2) The absolute Frobenius of T is the morphism Froby : T — T induced by the p-th
power map on B.

(3) The relative Frobenius of T (over k) is the morphism @7 : T — T®) =T X Spec (k)0 K
defined by (Frobr, s) where s denotes the structure morphism of T over k.

(4) For any r > 1, we inductively define the p"-Frobenius twist and the relative p"-
Frobenius of T as follows:

T = (TN and  @h = g, 0@ L
Lemma 1.5.2. Let T' = Spec (B) be an affine k-scheme. Then ¢l is induced by the k-algebra
homomorphism B®") .= B Qo k — B defined by x @ c— c- aP .
PRrROOF. The assertion follows from alternative identifications
TP =T xp ok and @ = (Frobl,s) : T — TP =T xy 0 k
where s denotes the structure morphism of 7" over k. O
Lemma 1.5.3. Let T and U be k-schemes.
(a) We have identifications (T Xy, U)(p) ~ 7@ %, UP and o) = (15 0U)-

(b) Any k-scheme morphism T — U yields a commutative diagram

T %7 (D)
U v )

where the second vertical arrow is the induced by the first vertical arrow.

ProOF. Considering the Frobenius twist as a functor on k-schemes, both statements are
straightforward to verify using Definition [I.5.1} O

Corollary 1.5.4. Let G be a finite flat k-scheme, and let ¢ = p" for some r > 1.
(1) The q-Frobenius twist G\9 is a finite flat k-group scheme.

(2) The relative q-Frobenius ¢, is a group scheme homomorphism.

PRrROOF. By induction, we immediately reduce to the case p = q. Then the desired asser-
tions easily follow from Lemma [1.5.3 U
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Definition 1.5.5. Let G be a finite flat k-group scheme. We define the Verschiebung of G
by Y = @lv, ie., the dual map of the relative Frobenius of G.

Remark. From the affine description of the Frobenius twist as noted in Lemma we
obtain a natural identification ((GV)(p))v =~ (). We can thus regard ¢)¢ as a homomorphism
from G® to G.

Lemma 1.5.6. Let G and H be finite flat k-group schemes.
(a) We have an identification gy, my = (Va,¥H)-
(b) Any k-group scheme homomorphism G — H yields a commutative diagram

G e q)

o

H < o)

where the second vertical arrow is the induced by the first vertical arrow.

PRroor. This is obvious by Lemma and Definition [1.5.5 Il

Proposition 1.5.7. We have the following statements:
(1) Pap, = ’l/]ap =0.
(2) ¢u, =0 and 1y, is an isomorphism.

(3) wz/pz is an isomorphism and vz,,7 = 0.

PRrOOF. All statements are straightforward to verify using the affine descriptions from
Example [I.1.6] and the duality results from Propositions and O

The Frobenius and Verschiebung turn out to satisfy a very simple relation.
Proposition 1.5.8. Given a finite flat k-group scheme G, we have

Y o pa = [pla and vaove = [plaw-

PRrROOF. The following proof is excerpted from [Pin| §14].

Let us write G = Spec (A) and GV = Spec (A") with some free k-algebra A of finite rank.
We also write A®) := A @, k and (AV)P) := AV @4, k. We let w4 and p4v denote the
k-algebra maps inducing ¢ and pgv, respectively. Note that, by definition, ¥¢ is induced
by ¢

By the Lemma the map o4 : AP — A is given by z ® ¢ — ¢ - 2P. We also have a
similar description for ¢ 4v, which yields a commutative diagram

AV

f&c — [cfOP]
_

(AV)P) = AV @4, k SymP AY ——— 5 AV

T % v fi (1.9)

(A\/)®P
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where [],v denotes the ring multiplication in AY. Note that the left horizontal map is k-
algebra homomorphism since k£ has characteristic p. By dualizing (1.9)) over k, we obtain a
commutative diagram

\
LIDA\/

AT 5 (A% — A s A, k=A

\ J (1.10)

A®p
where S, denotes the symmetric group of order p.

Let us give an explicit description of the map A in (1.10). It is not hard to see that
any nontrivial S,-orbit in (A®p)SP has p terms and thus maps to 0 as k£ has characteristic p.
Hence we only need to specify A\(a®P) for each a € A. By the isomorphism A = (AY)Y, we
may identify each a € A with ¢, € (AY)Y defined by €,(f) = f(a) for all f € AY. Since A is
the dual map of the left horizontal map in (1.9), for each f®@c € AY ®k k = (A®k o k)¥ we

have

ANa®P)(f@c)=(ea)(c- ) =c flaff =(fec)aw]l)=(®1)(f®0)
where the third equality follows from the identity f(a) ® c = 1®c- f(a)? in A @, k. We
thus find A\(a®P) = a ® 1.

By our discussion in the preceding paragraph, the diagram ([1.10)) extends to a commuta-
tive diagram

50\//1\/
AT 5 (A% 2 5 Ay, k= AP
\ J J:PA
A®p Rx; — HA Ty A

where [[, denotes the ring multiplication in A. Note that the diagonal map is given by
the comultiplication of A, as it is the dual of the diagonal map in (1.10]) given by the ring
multiplication in AY. Hence we obtain a commutative diagram of k-group schemes

G v G

e
«Tl"'ffp‘_'(xl,"' @p)

GPe— G

(1‘7“' 7$)<_‘$

which yields ¥¢ o o = [plg. Then we use Lemma and Lemma to obtain a

commutative diagram

o) P ~p?)
zch( J(%(p)
G2 o)
which yields @G o Y6 = Ygw © Paw = [Plaw- O

Let us now present a couple of important applications of the Frobenius morphism.
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Proposition 1.5.9. Let G = Spec (A) be a finite flat k-group scheme.

(1) G is connected if and only if oy, vanishes for some r.

(2) G is étale if and only if g is an isomorphism.

PROOF. Let I denote the augmentation ideal of A. Note that I is a maximal ideal since
A/I ~ k. We also have a k-space decomposition A ~ k @& I by Lemmam

Suppose that G is connected. Lemma[I.4.2]implies that A is a local ring, which is artinian
for being finite over a field k. Hence its maximal ideal [ is nilpotent, implying that there exists
some 7 with 2" = 0 for all 2 € I. We thus find ¢ = 0 by the decomposition A ~ k @ I and
Lemma

Conversely, suppose that ¢g, = 0 for some r. By observing that ¢, induces an isomorphism
G(k) ~ GP(k), we find that G(k) is trivial. Hence G is connected by Corollary We
have thus proved

Next we suppose that ¢¢ is an isomorphism. Then g induces an isomorphism on G°; in
other words, pgo is an isomorphism. This inductively implies that P(Goywr) 18 an isomorphism

for all r, and consequently that (. is an isomorphism for all r. On the other hand, we have
oo = 0 for some r by We thus find G° = 0, which implies étaleness of G by Corollary
49

Conversely, we assume that G is étale. Note that ker(¢¢) is connected by which must
be trivial as G° is trivial by Corollary We then conclude that ¢g is an isomorphism by
comparing the orders of G and G®). O

Proposition 1.5.10. The order of a connected finite flat k-group scheme is a power of p.

PROOF. Let G = Spec(A) be a connected finite flat k-group scheme of order n. We
proceed by induction on n. The assertion is trivial when n = 1, so we only need to consider
the inductive step.

Let us set H := ker(¢¢). Denote by I be the augmentation ideal of G, and choose elements

x1,--- ,xq € I which lift a basis of I/I?. Connectedness of G implies that A is a local ring
with maximal ideal I, as noted in the proof of Proposition [1.5.9, Hence z1,- - , x4 generate
I by Nakayama’s Lemma. In turn we have

H ~ Spec (A/(af, -+ ,2h)) (1.11)

by the affine description of ¢ as noted in Lemma We also have d > 0 by Corollary
as G is not étale by Corollary
We assert that the order of H is p?. It suffices to show that the map

A k[tlv 7td]/(t1177 7t§) —>A/(.’E11), 71'2)

defined by t; — z; is an isomorphism. Surjectivity is clear by definition, so we only need to
show injectivity. Recall that we have a k-space decomposition A ~ k & I by Lemma
We let 7 : A — I/I? be the natural projection map, and denote by y the comultiplication of
A. For each j =1,---,d, we define a k-algebra map

DA A A YT Ag 2 —— A

where the last arrow is induced by the map I/I? — k taking z; to 1 and z; to 0 for all i # j.
Note that

wr) €ex;@1+1@a; + 1k 1 foralli=1,---,d



34 II. FOUNDATIONS OF p-ADIC HODGE THEORY

0
as noted in (|L.8]) in the proof of Theorem[1.3.10, We thus find A% = D;\ as both sides agree
J

0
on t;’s. This means that ker(\) is stable under 5 for each j = 1,--- ,d. In particular, every
J
nonzero element in ker(\) with minimal degree must be constant. Hence ker(\) is either the
zero ideal or the unit ideal. However, the latter is impossible since A is surjective. We thus
deduce that ker(A) is trivial as desired.
As G is connected, we have ¢y, = 0 for some r by Proposition [1.5.9 Then ¢, = 0 induces
a trivial map on G/H, which means that G/H is also connected by Proposition m Hence
its order n/p? must be a power of p by the induction hypothesis. We thus conclude that n is
a power of p as desired. O

Corollary 1.5.11. Let G be a connected finite flat k-group scheme with the augmentation
ideal I. If o = 0, the order of G is p® where d is the dimension of I/I% over k.

ProOOF. This follows from the proof of Proposition [1.5.10 O

Remark. Proposition and Proposition will be very useful for us, even when the
base ring is not necessarily a field. In fact, if the base ring is a local ring with perfect residue
field of characteristic p, we can check the order, connectedness, or étaleness of a finite flat
group scheme by passing to the special fiber as noted in Lemma and Lemma [1.4.2

As a demonstration, we present another proof of Theorem in the case where R is
a local ring, without using Theorem As remarked above, we may assume that R is a
field by passing to the special fiber. By Corollary it suffices to prove that G° is trivial.
When R has characteristic p, this immediately follows from Proposition by invertibility
of the order. Let us now suppose that R has characteristic 0. Arguing as in the proof of
Proposition we can show

G° ~ Spec (R[t1,- - ,tq])
for some d. Then we must have d = 0 as G is finite over R, thereby deducing that G° is trivial
as desired.

In fact, with some additional work we can even prove Theorem when the base ring
is a field, as explained in [Tat97, §3.7]. The curious reader can also find Deligne’s proof of
Theorem in [Stil, §3.3]. We are also very close to a complete classification of all simple
objects in the category of finite flat group schemes over k as remarked after Example
Instead of pursuing it here, we refer the readers to [Stil, Theorem 54] for a proof.
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2. p-divisible groups

While finite flat group schemes have an incredibly rich theory, their structure is too simple
to capture much information about p-adic Galois representations. More explicitly, as stated
in Proposition they are only capable of carrying information about Galois actions on
finite groups. This fact leads us to consider a system of finite flat group schemes.

In this section, we develop some basic theory about p-divisible groups, which play a crucial
role in many parts of p-adic Hodge theory and arithmetic geometry. While our focus is on their
relation to the study of p-adic Galois representations, we also try to indicate their applications
to the study of abelian varieties. The primary references for this section are Demazure’s book
[Dem72| and Tate’s paper [Tat67].

2.1. Basic definitions and properties

Throughout this section, we let R denote a noetherian base ring.

Definition 2.1.1. Let G = lim G, be an inductive limit of finite flat group schemes over R
v>0
with group scheme homomorphisms i, : G, — Gy41. We say that G is a p-divisible group of

height h over R if the following conditions are satisfied:
(i) Each G, has order p*".

(ii) Each i, fits into an exact sequence

0 Gy — Gon L

For each v and ¢, we often write G, [p'] := ker([p']q, )-

Remark. The condition [(ii)| amounts to saying that each G, is identified via i, with Gy41[p"].
We may thus regard G as an fpqc sheaf where G(T') := lim G,,(T') for each R-scheme 7.

Example 2.1.2. We present some important examples of p-divisible groups.

(1) The constant p-divisible group over R is defined by Q,/Z, = li_n)lZ/p”Z with the
natural inclusions. Note that the height of Q,/Z), is 1.

(2) The p-power roots of unity over R is defined by ppee := lim fupe with the natural
inclusions. Note that the height of fi,~ is 1.

(3) Given an abelian scheme A over R, we define its p-divisible group by A[p™] :=
lim A[p*] with the natural inclusions. The height of A[p*] is 2g where g is the
dimension of A.

Remark. Another standard notation for pi,ec is G, [p™°]. Tate used a similar notation G, (p)
in [Tat67]. These notations are motivated by the identifications v = Gy, [p?] := ker([p"]e,,)-

Definition 2.1.3. Let G = h_rr}lGU and H = lii>nHv be p-divisible groups over R.
(1) A system f = (f,) of group scheme homomorphisms f, : G, — H, is called a

homomorphism from G to H if it is compatible with the transition maps for G and
H in the sense of the commutative diagram

GULHU

fv+l
Gy41 — Hyq

where i, and j, are transition maps of G and H, respectively.
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(2) Given a homomorphism f = (f,) from G to H, we define its kernel by ker(f) :=
lim ker(f,):
Example 2.1.4. Given a p-divisible group G = h_r)nGU over R, we define the multiplication
by n on G by a homomorphism [n]¢ := ([n]g,)-
Lemma 2.1.5. Let G = lii>nGv be a p-divisible group over R. There exist homomorphisms
tvt : Gy — Guge and oyt 2 Gupe — Gy for each v and t with the following properties:

(i) The map i,+ induces an isomorphism Gy = Gy14[p"].

(ii) There exists a commutative diagram

("]
Gv+t ” Gv—i—t
Gy
(i1i) We have a short exact sequence

iv,t j’Uyt

0 G

G’U-‘rt Gt Q

PROOF. Let us denote the transition map G, — Gy41 by @y, and take i, ; := y44—10- - -01y
for each v and t. We may regard G, as a closed subgroup scheme of G, via i, ;. The property
is then obvious for ¢ = 1 by definition. For ¢ > 1, we inductively proceed by observing

Gott[p"] 2 Gt [P N Gt [pY] = Gupto1 N Gt [p'] = Gopr—1[pY]-

Now |(i)| implies that each G, is annihilated by [p”]. More generally, the image of [p"]q, .,
is annlhllated by [pf] for each v and ¢. Hence the map [p¥]q, ., uniquely factors over a map
Jut : Gott — Gy, thereby yielding a commutative dlagram as stated in |(ii)| m

We now have left exactness of the sequence in [(iii)| by |(i)] and m )} Moreover, j,+; induces
a closed embedding G,1¢/G, — Gy, which is easily seen to be an isomorphism by comparing
the orders. We thus deduce the exactness of the sequence in O

Corollary 2.1.6. Let G =1im G, be a p-divisible group over R.

(1) We have an identification G, = ker([p¥|c) for each v.
(2) The homomorphism [p| is surjective as a map of fpgc shaves.

Remark. Corollary shows that the kernel of a homomorphism between two p-divisible
groups may not be a p-divisible group.

We note some fundamental properties of p-divisible groups inherited from finite flat group
schemes.

Proposition 2.1.7. Let G = li_H)le be a p-divisible group of height h over R.

(1) For each v, we have an exact sequence

Gor1 PGy 2% G, — 0.

(2) The inductive system GV = hL)nGX with the j,/ as transition maps is a p-divisible
group of height h over R.

(3) There is a canonical isomorphism (GV)Y = G.
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PRroor. Let us take i, ; and j,; as in Lemma Then we have a commutative diagram

G
2
(p*]

Gv+1 ” Gv+1

Ty=1y,1 Jv=J1,v
0 y Gy ’ ’

G, > 0

where the horizontal arrows form an exact sequence. In particular, we obtain an exact se-

quence as stated in Moreover, as [p”]éwrl = [p”]GZ+1 by Lemma we have a dual

exact sequence

-V v
by Proposition |[1.2.10, Hence we deduce and by Theorem m O

Definition 2.1.8. Given a p-divisible group G over R, we refer to the p-divisible group G
in Proposition [2.1.7| as the Cartier dual of G.

Example 2.1.9. The Cartier duals for p-divisible groups from Example are as follows:
(1) We have an identification (Qp/Z,)" = upe by Proposition m

(2) Given an abelian scheme A over R, we have A[p>*]Y = AY[p*>] by Corollary
where AV denotes the dual abelian scheme of A.

Proposition 2.1.10. Assume that R is a henselian local ring with residue field k. Let G =
ﬁ_ﬂ)lGU be a p-divisible group over R, and write G := G,/GS for each v. Then we have a
short exact sequence of p-divisible groups

Q—>GO—>G—>Gét—>Q

where G° = lim G and G = lim G¢.
— —

PrOOF. Let i, : G, — G411 denote the transition map. It suffices to construct homo-

morphisms i3 : G5 — G5, and i’ : G&' — G, so that the diagram

0 0 0

0 G° >VU » G 0
io i it

0 — G4y ot —— G&, 0
[p°] i 1P

00— Gy —— Gy —— G, —— 0

is commutative with exact rows and columns. Exactness of three rows directly follows from
Theorem [1.4.6] while exactness of the middle column is immediate by definition. In addition,
the bottom two squares clearly commute.

By Corollary there is a unique choice of i€ such that the top right square commutes.
We assert that the third column is exact with this choice. By Proposition [1.3.1] we may work
on the level of k-points. Since the first column vanishes on k-points by Proposition M all
horizontal arrows between the second and the third column become isomorphism on k-points.
Hence the desired exactness follows from exactness of the middle column.
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Let us now regard G, as a subgroup of G via the embedding 7,,. Then G}, must lie in
G, for being connected. Hence there exists a unique closed embedding 4, which makes the
top left square commutative.

It remains to show that the first column is exact with our choice of i;. As i is a closed
embedding by construction, we only need to show that G = Gy, [p"] via iy. Indeed, as
Gy is a subgroup of both G, = G,;1[p"] and Gy, it must be a subgroup of Gv—i-l[ Y],
Hence it remains to show that G ,[p"] is a subgroup of Gy. As G}, [p"] is a subgroup of

v+1[p ] = G,, it suffices to show that G, [p’] is connected. Since G4 (k) = 0 by Corollary

we have Gv +11p")(k) = 0 as well. Hence G5 [p"] is connected by Corollary O

Definition 2.1.11. Assume that R = k is a field of characteristic p. Let G = h_r)nGv be a
p-divisible group over k.

(1) The Frobenius twist of G is an inductive limit G®) := li_n}Gq()p ) where the transition
maps are induced by the transition maps for G.

(2) We define the Frobenius of G by g := (pg,) and the Verschiebung of G by ¥¢ :=
Proposition 2.1.12. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k.

(1) The Frobenius twist G®) is a p-divisible group of height h over k.

(2) The Frobenius g and the Verschiebung g are homomorphisms.

(3) We have ¢ o pc = [pla and oG o e = [plaw -

PRrROOF. The statements |(1)|and are straightforward to check using Lemma and
Lemma The statement [(3)]is a direct consequence of Proposition [1.5.8] O

We finish this subsection by describing a connection between p-divisible groups and con-
tinuous Galois representations.

Definition 2.1.13. Assume that R = k is a field. Given a p-divisible group G = h_r)nGv over
k, we define the Tate module of G by

T,(G) == lim G, (k)
4
where the transition maps are induced by the homomorphisms j, 1 : Gy41 = G, from Lemma

2.1.0i

Proposition 2.1.14. Assume that R = k is a field with characteristic not equal to p. Then
we have an equivalence of categories

{ p-divisible groups over k } — { finite free Z,-modules with a continuous T'y-action }

defined by G — T,(G).

PROOF. Let us first verify that the functor is well-defined. Let G = lim G,, be an arbitrary

p-divisible group over k. Since G, is killed by [p”] as noted in Lemma each G, (k) is a
finite free module over Z/p"Z with a continuous I';-action. Hence T}, = lim G, (k) is a finite
free Z,-module with a continuous I'y-action.

As all finite flat k-group schemes of p-power order are étale by Theorem we deduce
full faithfulness of the functor from Proposition Hence it remains to prove essential
surjectivity of the functor. Let M be a finite free Z,-module with a continuous I';-action. As
each M, := M/(p") gives rise to a finite étale group scheme G, by Proposition we form
a p-divisible group G = lim G, with T,(G) =M. O
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we assume that R is a complete noetherian local ring with residue field
k of characteristic p.

Definition 2.2.1. Let G = hL>nGU be a p-divisible group over R.

(1) We say that G is connected if each G, is connected, and étale if each G, is étale.

(2) The p-divisible groups G° and G¢* as constructed in Proposition [2.1.10] are respec-
tively called the connected part and the étale part of G.

Example 2.2.2. Below are essential examples of étale/connected p-divisible groups.
(1) The constant p-divisible group Q,/Z, is étale by Proposition m
(2) The p-power roots of unity gy~ is connected by Corollary
For the rest of this subsection, we let & := R][[t1,- -+ ,t4]] denote the ring of power series
over R with d variables. Note that @/ ®pe/ = Rl[t1, - ,tq,u1, -+ ,uq|]. We often write
T:= (t1, - ,tq) and U := (uy, -+ ,uq).
Let us introduce the key objects for studying connected p-divisible groups over R.

Definition 2.2.3. A continuous ring homomorphism p : & — &/ ®pe/ is called a (commuta-
tive) formal group law of dimension d over R if the power series ®;(T,U) := u(t;) € o/ Dol
form a family ®(7',U) := (®;(T,U)) that satisfies the axioms

(i) associativity: ®(T,®(U,V)) = ®(®(T,U),V),
(ii) unit section: ®(7,04) =T = ®(04,7),
(iii) commutativity: ®(T,U) = ®(U,T)
where V' = (v, -+ ,v4) is a tuple of d independent variables.

Example 2.2.4. The multiplicative formal group law over R is a 1-dimensional formal group
law pg : R[[t]] — R[[t,u]] defined by pg (t) =t+u+tu=1+)(1+u)—1

Lemma 2.2.5. Let p be a formal group law of dimension d over R.

(1) We have commutative diagrams

s \ > ~ Q;A — AZ‘ ~
o 1 1
Apd — S ABpA S o
(2) The ring homomorphism € : &/ — R given by €(t;) = 0 fits into commutative diagrams
o —4 g~ . FORR o —4 7~ | RRpo
AR AR

(8) There exists a ring homomorphism v : &/ — < that fits into the commutative diagram

g —r s ASpo

} id@ﬂ@ﬂ

R—— &
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PROOF. Let ®(T,U) be as in Definition The statements and immediately
follow from the axioms in Definition Moreover, by setting I;(t) := «(¢;), the statement
amounts to existence of a family I(T") = (I;(T")) of d power series with

&(T, I(T)) = 0 = B(I(T),T).

By the axiom in Definition we only need to consider the equation ®(7,1(T")) = 0.
We wish to present the desired family as a limit I(7") = lim P;(T") where each P; is a family
j—00

of degree j polynomials in t1,--- ,tg with

(a) Pj = Pj_y mod (t1,--- ,ta)’,

(b) (I)(PJ(T)aT) = 0 mod (tlﬂ T 7td)j+1‘
As we have ®(T,U) = T + U mod (t1,--- ,tq,u1, -+ ,uq)® by the axiom in Definition
we must set P;(T") := —T. Now we inductively construct P;(T) for all j > 1. By the
property @ for Pj, there exists a unique homogeneous polynomial A;(T") of degree j+ 1 with

Aj(T) = —®(Pj(T),T) mod (t1,--- ,tg) 2
Setting Pjy1(T) := P;(T) + A;(T), we immediately verify the property [(a)] for Pj41, and also
verify the property @ for P;y1 by
®(Pj41(T),T) = ®(Py(T) + Aj(T), T) = ®(Py(T), T) + Aj(T) = 0 mod (t1, -~ ,ta)"*?

where the second equality comes from observing A;(T)? = 0 mod (t1,- -+ ,t4)"*2 by degree
consideration. O

Remark. Lemma [2.2.5] shows that a formal group law p over R amounts to a formal group
structure on the formal scheme Spf(«7) with p, €, and ¢ as the comultiplication, counit, and
coinverse.

Definition 2.2.6. Let p and v be formal group laws of dimension d over R. A continuous ring
homomorphism ~ : &/ — & is called a homomorphism from p to v if the following diagram
commutes:

g —Y s IRpd

f’ l’y@’y
ot ARpd

Remark. Note that v goes from the power series ring for v to the power series ring for pu.
This is so that « corresponds to a formal group homomorphism between the formal groups
associated to p and v in the sense of the remark after Lemma [2.2.5

Lemma 2.2.7. Let p and v be formal group laws of dimension d over R, represented by fam-
ilies of power series ®(T,U) = (®;(T,U)) and V(T,U) := (¥;(T,U)) with ®;(T,U) := p(t;)
and V;(T,U) := v(t;). A continuous ring homomorphism ~ : &/ — </ is a homomorphism
from p to v if and only if the family E(T) = (E;(T)) of d power series (in d variables) defined
by Zi(T) := v(t;) satisfies V(=(T),2(U)) = Z(®(T,U)).

Proor. The diagram in Definition becomes commutative if and only if we have
FE(ED),EW))) = f(E(®R(T,U))) for every f(T) € . O

Example 2.2.8. Let u be a formal group law of dimension d over R. The multiplication by
n on p, denoted by [n],, is inductively defined by [1], :=id and [n], = ([n — 1],®id) o pu.

Remark. As expected, [n], corresponds to the multiplication by n map on the formal group
associated to p in the sense of the remark after Lemma
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Definition 2.2.9. Let p be a formal group law of dimension d over R.

(1) The ideal . := (t1,--- ,tq) is called the augmentation ideal of p.
(2) We say that p is p-divisible if [p],, : @/ — </ is finite flat in the sense that it makes
&/ a free module of finite rank over itself.

Remark. The ideal .# is the kernel of the ring homomorphism € : &/ — R from Lemma
which corresponds to the counit of the formal group associated to i as remarked after
Lemma Hence the notion of augmentation ideal for formal group laws is coherent with
the notion of augmentation ideal for affine group schemes as defined in Definition [I.3.3

It turns out that every p-divisible formal group law yields a connected p-divisible group.

Proposition 2.2.10. Let p be a p-divisible formal group law over R with the augmentation
ideal . Define Ay, := o [[p®],(F) and p[p"] := Spec (A,) for each v.
(1) Each plp®] carries the natural structure of a connected finite flat R-group scheme.

(2) The inductive limit p[p>] := lim u[p®] with the natural transition maps is a connected
p-divisible group over R.

PROOF. Let us take € and ¢ as in Lemma For each v, we have
Ay, = M/[pv]u(f) > oI ®’Q{7[p'u]ﬂ o 2R ®"777[Pv}u o (2.1)
Hence u[p’] = Spec (A,) has the structure of an R-group scheme with 1 ® pu, 1 ® €, and 1 ® ¢
as the comultiplication, counit, and coinverse.

Denote by r the rank of & over [p], (/) as a free module. A simple induction shows that

the rank of & over [p"], (/) is . We then deduce from ([2.1)) that A, is finite free over R of
rank r’. Thus p[p"] is indeed finite flat of order r* over R.

Moreover, as R is a local ring, the power series ring <7 is also a local ring. Hence A, =
o [[p”](F) is a local ring as well. We thus deduce that p[p¥] is connected.

By Proposition [1.5.10} the order of u[p] is p for some h. Then our discussion above shows
that u[p¥] has order p”"*. Furthermore, the ring homomorphism

Av = [[p°)u(I) — [plu() /10" u(S)

induced by [p] is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we get a surjective ring homomorphism

Avi1 = [0 u(I) = [plu(@) /" u(SF) = A,

which induces an embedding i, : pu[p¥] < u[p’T1]. It is then straightforward to check that i,
identifies uu[p®] as the kernel of [p¥] on u[p'*1]. We thus conclude that p[p™] := lim pu[p"] is a
connected p-divisible group of height h over R. 0

Remark. Let ¢, denote the formal group associated to . Then by construction we have
plp®] = 9, [p¥] for each v. With this observation the proof of|(2)| becomes almost trivial.

Definition 2.2.11. Given a p-divisible formal group law p over R, we define its associated
connected p-divisible group over R to be u[p™] as constructed in Proposition [2.2.10

Example 2.2.12. Consider the multiplicative formal group law 1E, introduced in Example
An easy induction shows [p],,. (t) = (14-t)P" —1 for each v. We then find ng, [P'] = pypr
for each v by the affine description in Example thereby deducing pg [P™] = fpoe.
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The association described in Proposition [2.2.10] defines a functor from the category of
p-divisible formal group laws to the category of connected p-divisible groups. Our next goal
is to prove a theorem of Serre and Tate that this functor is an equivalence of categories.

Proposition 2.2.13. Let G = lii>nGv be a connected p-divisible group over R with G, =
Spec (Ay) for each v. We have a continuous isomorphism

lim(A, ®@p k) = k[[t1, -, ta]]

for some positive integer d.

PROOF. Let us write G := G xr k and G, := G, xg k. As G is connected, each G, is
connected by Corollary Hence each A, ®pg k is a local ring by Lemma [1.4.2

Let us take H, := ker(cp%). Note that each H, must be a closed subgroup scheme of
G[p’] = G, since Y% o % = [p"]g by Proposition [2.1.12} Hence we have H, ~ Spec (B,) for
some free k-algebra B, with a surjective k-algebra map A, ®g k — B,. In addition, B, is a
local ring for being a quotient of a local ring A,. We also note that each G, is a subgroup of
ker(go%) = H,, for some large w by Proposition [1.5.9] In other words, for each v we have a
surjective k-algebra map B,, — A, @ k. Hence we obtain a continuous isomorphism

lim A, ®g k >~ lim B,,. (2.2)

Let J, be the augmentation ideal of H,, and take J := @Jv. By definition, we have

By/Jy =~ k. Let y1,- -+ ,yq be elements of J which lift a basis for J;/J?. As Hy = ker(¢p,)
by construction, we use Lemma to obtain a cartesian diagram

k= (By/J,) ®ro k —— B

T T

B ~ B, ®p, k —2=¢" B,

which yields B; & B,/ qup ) where qup ) denotes the ideal generated by p-th powers of elements

in J,. We thus find J; = J,/ Jép ) and consequently Jj/ J12 =~ J,/J2. Therefore the images of
Y1, ,yq form a basis of J,/J2, and thus generate the ideal .J, by Nakayama’s lemma. In
particular, we have a surjective k-algebra map

klti,--- ,ta] - By

which sends each ¢; to the image of y; in B,. Furthermore, as ¢}, vanishes on H, by
construction, the above map induces a surjective k-algebra map

Klt, - s ta /(8- 1) = By (2.3)
by Lemma By passing to the limit we obtain a continuous ring homomorphism

Klltr, -+ o td]] — lim B,

By , it remains to prove that this map is an isomorphism. It suffices to prove that
the k-algebra homomorphism is an isomorphism for each v. By surjectivity, we only
need to show that the source and the target have equal dimensions over k. In other words,
it is enough to show that the dimension of B, over k is p®, or equivalently that H, has

order . en v = 1, 1S 1S an 1mimedlate consequence o orollar .O. el us now
der p®. Wh 1, this i i diat q f Corollary [1.5.11, Let

v+1

Hyt Hyy — ngi)l vanishes, it should factor through

proceed by induction on v. As ¢

ker(go%(m) & Hép ). Moreover, as @ 0 g = [p}é(p) is surjective by Corollary [2.1.6, ¢ is also
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surjective. Since the preimage of oY =~ ker(go%(p)) under oz must lie in ker(gog'l) = Hyt1,
we deduce that the map Hy41 — Hép ) induced by ¢mu,,, is surjective. We thus obtain a short

exact sequence

PHy41

0 H, Hyt HY ——— 0.

As the order of Hqu ) is the same as the order of H,, we complete the induction step by the
multiplicativity of orders in short exact sequences. g

Lemma 2.2.14. Let p be a formal group law of dimension d over R with the augmentation
ideal Z. For each positive integer n, we have
[n],(t;) € nt; + 72

—

PROOF. For each n, we define the family Z,,(T") = (E,,;(T')) of d power series in d variables

by Z,,,i(T) := [n]u(t;). We can rewrite the desired assertion as
Zn(T) = nT mod 2. (2.4)
Let us define the family ®(7T,U) = (®;(T,U)) of d power series in 2d variables by ®;(T,U) :=
p(ti). By the axiom in Definition we have
O(T,U) =T +U mod (t1,--- ,tg,ui,- - ,uq)’.
Hence the inductive formula [n], = ([n — 1],®id) o u yields
Z0(T) = ®(E,_1(T),T) = Z_1(T) + T mod .72

Moreover, we have =1 (T') = T since [1], = id,s. We thus obtain by induction on n. O

Lemma 2.2.15. Let p be a formal group law over R with the augmentation ideal .. Define
Ay = [[p¥](F) for each v. Then we have a natural continuous isomorphism

&/ = 1lim A,,.
p—

PROOF. Let us write m for the maximal idea of R and 9 := m&/ + .# for the maximal
ideal of &7. For each v we define A, := &7 /[p"],(.#), which is a free local R-algebra of finite
rank by Proposition [2.2.10 For each i and v we have MM¥ C [p¥],(.#) +m'e/ for some w since
the algebra o/ /([p’](.#) + m'e/) = A,/m'A, is local artinian. Moreover, by Lemma [2.2.14
we find [p],(.#) C p.& + .2 C MY and thus [p];,(#) € MY for all v. Hence for each i and
v we have [p¥],(#) + m'eZ €M™ for some w. We thus obtain

of 2 tim of [0 2 lim o /(p"),() + /) = lim A, /m' A, & lim A,
where the last isomorphism comes from the fact that each A, is m-adically complete for being
finite free over R by a general fact as stated in [Stal Tag 031B]. O

Theorem 2.2.16 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R} — { connected p-divisible groups over R }

which maps each p-divisible formal group law p over R to u[p®].

PrOOF. Let p and v be formal group laws of degree d over R. Let us define A, :=
o [[p*](F) and B, := &/ /[p*],(#). By Proposition w[p¥] := Spec (A,) and v[p’] :=
Spec (B,) are connected finite flat R-group scheme. Let p, and v, denote the comultiplications
of p[p¥] and v[p’]. We write Hom,, ,, (By, Ay) for the set of R-algebra maps B, — A,
which are compatible with the comultiplications v, and p,, and Hom, (<7, /) for the set of


https://stacks.math.columbia.edu/tag/031B

44 II. FOUNDATIONS OF p-ADIC HODGE THEORY

continuous ring homomorphisms &/ — & which are compatible with v and p in the sense of
the commutative diagram in Definition By Lemma [2.2.15| we have

Hom(u,v) = Hom, , (o, ) = Homy’u(m By, liLnAv)
= lim Homy, ., (By, Ay) = lim Hompg g, (u[p”], v[p"]) = Hom(u[p>], v[p>]).
We thus deduce that the functor is fully faithful.

Let G = li_I)l’le be an arbitrary connected p-divisible group over R. We write G, =
Spec (A,) where A, is a free local R-algebra of finite rank. Let p, : Ay,+1 — A, denote the
R-algebra homomorphism induced by the transition map G, — G,4+1. Note that each p, is
surjective as the corresponding transition map G, — Gy is a closed embedding.

By Proposition [2.2.13| we have a continuous isomorphism
El[t1, - ,td]] EliLD(Av Qg k). (2.5)
We aim to lift this isomorphism to a homomorphism
frodd = Rllt, et — lim A,

In other words, we construct a lift f, : &/ — A, of each projection k[[t1, - ,t4]] - A, ®r k
so that the following diagram commutes:

fo
s Apyr —— Apy1 Ork

o —— A
N Jpon

Ay — A, QRrk

After taking fi; to be any lift of the projection kl[[t1,--- ,tq4]] - A1 ®gr k, we proceed by
induction on v. Let us choose y1, - ,yq € Ay+1 which lift the images of ¢1,--- ,t; under
the projection k[[t1,- - ,tq]] - Av+1 ®r k. Then py(y1),- -, pv(ya) should lift the images of
t1,--- ,tq under the projection k[[t1,--- ,tq]] - Ay, @ k. Since f, is a lift of the projection
E[[t1, - ,td]] > Ay ®r k, we have f,(t;) — pu(yi) € mA, where m denotes the maximal ideal
of R. By surjectivity of p,, we may choose z1, -, 24 € mA,11 with p,(z;) = fu(ts) — po(vi).
Let us now define f,4+1 : .97 — Ay+1 by setting f,11(t;) = y; + z;. From our construction, we
quickly verify that f,11 is a desired lift of the projection k[[t1, - ,t4]] = Avi1 Qg k.

We assert that f is indeed an isomorphism. Nakayama’s lemma implies surjectivity of
each f,, which in turn implies surjectivity of f. Moreover, we find lim A, ~ R[u]] as an
R-module since each p, : Ay+1 — A, admits an R-module splitting for being a surjective map
between two free R-modules. Hence f splits in the sense of R-modules as well. It is also clear
that this splitting is compatible with passage to the quotient modulo m. In particular, by the
isomorphism we have ker(f) ®gr k = 0, or equivalently mker(f) = ker(f). Denoting by
M the maximal idea of 7, we find

Mker(f) = (me/ + (t1,--- ,tq)) ker(f) = ker(f).
As o/ = R|[t1,-- ,tq]] is noetherian, we deduce ker(f) = 0 by Nakayama’s lemma.

The formulation of f commutes with passage to quotients modulo m™ for any n. Moreover,
the kernels of the projections &/ — A, form a system of open ideals in <7 as the R-algebras
A, are of finite length. Hence by a theorem of Chevalley as stated in [Mat87, Exercise 8.7]
we deduce that f is a continuous isomorphism.

Let us now denote the comultiplication of Gy, by ji,, and take p : &7 — @& p.a/ to be lim fu,
via the isomorphism f. The axioms for each comultiplication g, implies that p fits in the
commutative diagrams in and of Lemma which in turn implies that p is indeed a

formal group law over R. Now let 1, : Ay — A,4+ denote the injective ring homomorphism
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induced by jy+ : Gyyt — Gy as defined in Lemma Since we have [p’]g = lim ji 1, the
isomorphism f yields an identification [p”],, = limn, . It is then straightforward to check that
[p], is finite flat, which means that pu is p-divisible. We then find pu[p¥] = G, and p[p>] = G,
thereby establishing the essential surjectivity of the functor. O

Remark. The last paragraph of the proof can be simplified by considering the formal group
¢, associated to p. In fact, as it makes sense to write ¢, = li_n)le as a formal scheme, we
immediately obtain the identification ¢,[p"] = G, and the p-divisibility of ¥, by observing
[p"]¢ = limju¢. Then we complete the proof by identifying u[p'] & ¥,[p"] for each v as
remarked after Proposition [2.2.10

Definition 2.2.17. Let G be a p-divisible group over R. We write u(G) for the unique p-
divisible formal group law over R with u(G)[p™] ~ G° as given by Theorem [2.2.16, and define
the dimension of G to be the dimension of ;(G).

Corollary 2.2.18. Let G be a p-divisible group over R. Let us write G := G xr k. Then
ker(¢g) has order p® where d is the dimension of G.

PROOF. Proposition implies that ker(¢g) lies in G := G° xpk. Hence the assertion
follows from Proposition [2.2.13] Theorem [2.2.16] and their proofs. U

We finish this subsection by discussing several important applications of Theorem [2.2.16

Theorem 2.2.19. Let G be a p-divisible group of height h over R. Let d and d" denote the
dimensions of G and G, respectively. Then we have h = d + d" .

PROOF. Let us write G := G xp k and G = li_n)l@v where each G, is a finite flat k-group

scheme. Note that ker(¢g) must lie in G[p] & G since g0 ¢z = [p|g by Proposition [2.1.12
In particular, we have ker(yg) & ker(pg, ). We similarly find ker(¢z) = ker(vg, ).

Let us consider the diagram

el N é(p) 0

» G
l[ﬁ]g l%
» G

d .G 0.

0 — ker

0

The left square commutes since ker(¢g) must lie in G[p] as already noted, while the right

square commutes by Proposition[2.1.12 In addition, the first row is exact since o is surjective
as noted in the proof of Proposition [2.2.13] while the second row is visibly exact. Hence by

the snake lemma we obtain an exact sequence

0 —— ker(ypg) —— ker([plg) —— ker(vg) —— 0.

(2.6)

We now compute the order of ker(¢z) = ker(¢g ). As g, = gpév by definition, we may
1
identify ker(@/}@l) with the cokernel of ¢gy by the exactness of Cartier duality. Moreover,

since 6\1/ and (GY)(p) have the same order, we use the mutiplicativity of orders in short exact
sequences to find that the cokernel of e has the same order as ker(goéy) = ker(pgv). We

thus deduce from Corollary [2.2.18| that ker(v¢) has order Pt

Note that ker(pg) has order p? by Corollary [2.2.18] Since ker([p]z) = G4 has order p”,
the multiplicativity of orders in the exact sequence ([2.6)) yields p" = pd+dv, or equivalently
h=d+ d" as desired. O
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Proposition 2.2.20. Assume that k is an algebraically closed field of characteristic p. Every
p-divisible group of height 1 over k is isomorphic to either Q,/Z;, or fipe.

PROOF. Let G = @GU be an étale p-divisible group of height h over k. Proposition
2.1.10| implies that G is either étale or connected.

Let us first consider the case where G is étale. Then each Gy is a finite étale R-group
scheme of order p such that Gy = Gy41[p"]. By Proposition each Gy (k) is an abelian
group of order p" such that G, (k) is the p’~torsion subgroup of G,41(k). An easy induction
shows Gy (k) ~ Z/p"Z, which in turn implies G, ~ Z/p"Z by Proposition m We thus find
G ~Qp/Zyp.

Let us now turn to the case where G is connected. As G has dimension 1, Theorem [2.2.19
implies that GV is zero dimensional and thus étale. Hence by the discussion in the preceding
paragraph we find G¥ ~ Q,/Z, or equivalently G ~ (Q,/Z,)" ~ fipe. O

Remark. The argument in the second paragraph readily extends to show that every étale
p-divisible group of height h over k is isomorphic to Q,/ th .

Example 2.2.21. Let E be an ordinary elliptic curve over Fp. By Proposition|2.1.10[ we have
an exact sequence

Q N E[poor _ E[poo] N E[poo]ét . Q

Note that both E[p>]° and E[p>]® are nontrivial since both E[p]° and E[p|** := E[p]/E|p]°
are nontrivial as seen in Example [1.4.12] Since E[p™] has height 2, we deduce that E[p*>]°
and E[p>]¢ both have height 1. Hence the above exact sequence becomes

0 — ppe — Ep*] — Qp/Zy, — 0

by Proposition [2.2.20l Moreover, this exact sequence splits as it splits at every finite level by
Proposition We thus find

E[p™] ~ Qp/Zy X pipe.

Remark. Let us extend our discussion in Example[2.2.21]to describe the Serre-Tate deforma-
tion theory for ordinary elliptic curves. The general Serre-Tate deformation theory says that a
deformation of an abelian variety over a perfect field of characteristic p is equivalent to a defor-
mation of its p-divisible group. Hence the deformation theory of an ordinary elliptic curve F
over [F,, is the same as the deformation theory for the p-divisible group E[p™] ~ Q,/Z;, X pipe.
Moreover, as our discussion in Example equally applies for ordinary elliptic curves
over any deformation ring, every deformation of £ should be an extension of Q,/Z, by fip.

We thus find that the deformation space of E is naturally isomorphic to Ext! (Qp/Zy, prp=).
Furthermore, by the short exact sequence

QH@—»%—)QP/ZPHQ

we obtain an identification Ext!(Q,/Zy, fip) = Hom(Z,, ppe ), which has the natural struc-

ture of a formal torus of dimension 1 as described in Example The unit section corre-
sponds to a unique deformation of E, called the canonical deformation of E, for which the
exact sequence as described in Example splits. The canonical deformation is also a
unique deformation of E which lifts all endomorphisms of F.
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2.3. Dieudonné-Manin classification

Our main goal in this subsection is to introduce two classes of semilinear algebraic objects
that are closely related to p-divisible groups. We begin by recalling without proof that the
ring of Witt vectors over a perfect IF,-algebra satisfies the following universal property:

Lemma 2.3.1. Let A be a perfect Fp,-algebra, and let R be a p-adically complete ring. Denote
by W(A) the ring of Witt vectors over A. Let T : A — R/pR be a ring homomorphism.
Then T uniquely lifts to a multiplicative map ® : A — R and a ring homomorphism 7 :

W(A) — R. In addition, we have

T (Z[an]pn> = Zﬁ'(an)p" for every a, € A

n=0 n=0

where [a,| denotes the Teichmiiler lift of ay, in W(A).
Remark. For a proof, we refer the readers to [Ked15, Lemma 1.1.6].

Example 2.3.2. Let W(A) be the ring of Witt vectors over a perfect F,-algebra A. By
Lemma the p-th power map on A uniquely lifts to an endomorphism @y 4y on W(A),
called the Frobenius automorphism of W (A), which satisfies

PW(A) (Z[an]p”) = Z[ag]Pn for all a, € A

n=0 n=0
where [a,] and [a}] respectively denote the Teichmiiler lifts of a, and af, in W(A). The
perfectness of A implies that oy (4) is indeed an automorphism.

Remark. For A = F,, we have identification W (F,) = Zp[(;—1] where (;—1 denotes a primitive
(¢ — 1)-st root of unity. Then the Frobenius automorphism ow(r,) sends (g1 to Cf;_l while
acting trivially on Z,.

For the rest of this section, we let k& be a perfect field of characteristic p. We also write
W (k) for the ring of Witt vectors over k, and Ky(k) for the fraction field of W (k).

Definition 2.3.3. Let o denote the Frobenius automorphism of W (k).
(1) We define the Frobenius automorphism of K(k) to be the unique field automorphism
on Ky(k) which extends o.
(2) Given two W (k)-modules M and N, we say that an additive map f: M — N is
o-semilinear if it satisfies
flam) = oy (a)f(m) for all a € W (k) and m € M.

(3) A Dieudonné module of rank r over k is a free W (k)-module M of rank r with a
o-semilinear endomorphism ¢y, called the Frobenius endomorphism of M, whose
image contains pM.

(4) An isocrystal of rank r over Ky(k) is an r-dimensional Ky(k)-space N with a o-
semilinear automorphism ¢y called the Frobenius automorphism of N.

(5) Given two Dieudonné modules My and M over k, a W (k)-linear map f : My — Mo
is called a morphism of Dieudonné modules if it satisfies

flean (m)) = o (f(m)) for all m € M;.

(6) Given two isocrystals N1 and Ny over Ky(k), a Ko(k)-linear map g : Ny — Ny is
called a morphism of isocrystals if it satisfies

g(pn, (n)) = ¢n,(g(n)) for all n € Ny.
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Lemma 2.3.4. Let o denote the Frobenius automorphism of Ko(k).

(1) Every Dieudonné module M over k naturally gives rise to an isocrystal M[1/p] =
M @y Ko(k) over Ko(k) with the Frobenius automorphism ¢y @ 1.

(2) Given an isocrystal N over Ko(k), the dual space NY = Homp, ) (N, Ko(k)) is
naturally an isocrystal over Ky(k) with the Frobenius automorphism onv given by

onv (f)(n) = o(f(pn () for all f € NV andn € N,

(3) Given two isocrystals N1 and Na over Ko(k), the vector space Ny R o (k) N2 is nat-
urally an isocrystal over Ko(k) with the Frobenius automorphism on, ® @n,.

PROOF. All statements are straightforward to verify using Definition [2.3.3 O

Remark. The category of Dieudonné modules over k also admits a natural notion of tensor
product and dual.

Example 2.3.5. Let N be an isocrystal of rank r over Ky(k). Lemma implies that
det(N) = A"(N) is naturally an isocrystal of rank 1 over Ko(k), which we refer to as the
determinant of N.

We now introduce several fundamental theorems that allow us to study p-divisible groups
and abelian varieties over k using semilinear algebraic objects defined in Definition We
won’t provide their proofs, as we will only use these theorems as motivations for some key
constructions in Chapter [[II] and [V] The readers may find an excellent exposition of these
theorems in [DemT72 Chapters III and IV].

Theorem 2.3.6 (Dieudonné [Die55]). There is an exact anti-equivalence of categories
D : { p-divisible groups over k } — { Dieudonné modules over k }
such that for an arbitrary p-divisible group G over k we have the following statements:
(1) The rank of D(G) is equal to the height of G.
(2) G is étale if and only if op(q) is bijective.
(3) G is connected if and only if op ) is topologically nilpotent.

(4) [pla induces the multiplication by p on D(G).
(5) There exists a canonical identification D(GV)[1/p] =2 D(G)[1/p]".

Definition 2.3.7. We refer to the functor D described in Theorem 2.3.6] as the Dieudonné
functor.

Example 2.3.8. Let o denote the Frobenius automorphism of W (k).
(1) D(Qp/Zy) is isomorphic to W (k) together with ¢pq,,z,) = o-
(2) ]D)(ms isomorphic to W (k) together with goD(#p;pa.
(3) If E is an ordinary elliptic curve over k, we have D(E[p>]) ~ W (k)®? together with
Po(Ep]) = 0 D po.
Remark. We can also define the Verschiebung endomorphism 1 on W (k) which satisfies

P <Z[an]p”> = Z[an_l]p" for all a,, € k

n=0 n=1
where [a,,] denotes the Teichmiiler lift of a,, in W (k). It is then straightforward to check that
o o1 and 1 o o are both equal to the multiplication by p on W (k). Hence we can recover

Proposition by applying Theorem to the first example above.
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Definition 2.3.9. A homomorphism f : G — H of p-divisible groups over k is called an
isogeny if it is surjective (as a map of fpqc sheaves) with finite flat kernel.

Example 2.3.10. We present some important examples of isogenies between p-divisible
groups.

(1) Given a p-divisible group G over k, the homomorphisms [p|q, ¢, and g are all

isogenies.

(2) Anisogeny A — B of two abelian varieties over k induces an isogeny A[p™°] — B[p™].
Proposition 2.3.11. A homomorphism f : G — H of p-divisible groups over k is an isogeny
if and only if the following equivalent conditions are satisfied.

(i) The induced map D(H) — D(G) is injective.

(ii) The induced map D(H)[1/p] — D(G)[1/p] is an isomorphism.

Corollary 2.3.12. Let G be a p-divisible group over k. The isogeny class of G is determined
by the isomorphism class of the isocrystal D(G)[1/p].

Definition 2.3.13. Let N be an isocrystal of rank r over Ky(k).
(1) The degree of N is the largest integer deg(N') with pgee(n)(1) € plesMTY (k), where
@det(N) denotes the Frobenius automorphism of det(iV).
deg(N)
~ 1k(N)
Example 2.3.14. Let A = d/r be a rational number written in lowest terms with r > 0.

The simple isocrystal of slope X over Ko(k), denoted by N()), is the Ko(k)-space Ko(k)®"
together with the o-semilinear automorphism ¢y () given by

(2) We write rk(NN) for the rank of N, and define the slope of N by p(N) :

ooy (e1) = ez, onoy(er—1) = e ony)(er) = plea,
where eq,--- , e, denote the standard basis vectors. It is straightforward to verify that N()\)
is of rank r, degree d, and slope .

Theorem 2.3.15 (Manin [Man63]). Every isocrystal N over Ko(k) admits a unique direct
sum decomposition of the form

l
N~ N(r)o™
=1

for some \j € Q with A\ < Ao < -+ < A

Definition 2.3.16. Let N be an isocrystal over Ky(k) with a direct sum decomposition

l
N~ N ()&
=1

for some \; € Q with A\ < Ao < --- < \;. For each i, let us write \; = d;/r; for the lowest
form with r; > 0.

(1) Each J; is called a Newton slope of N with multiplicity m;.

(2) The Newton polygon of N, denoted by Newt(N), is the lower convex hull of the
points (0, 0) and (m1r1 4+ -+ myr,mady + - -+ mldl) in R2.

Example 2.3.17. For an ordinary elliptic curve E over k, we have an isomorphism
D(E[p=][1/pl ~ N(0) & N(1).
The Newton polygon of D(E[p>])[1/p] connects the points (0,0), (1,0), and (2,1).
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Proposition 2.3.18. Let N be an isocrystal over Ko(k). Then we have N ~ D(G)[1/p]
for some p-divisible group G of height h and dimension d over k if and only if the following
conditions are satisfied:

(i) N is of rank h and degree d.

(ii) Every Newton slope A of N satisfies 0 < A < 1.

Theorem 2.3.19 (Serre-Honda-Tate [Tat71], Oort [Oor00]). Let N be an isocrystal over

Ko(k). There exists a principally polarized abelian variety A of dimension g over k with
N ~D(A[p>])[1/p] if and only if the following conditions are satisfied:

(i) N is of rank 2g and degree g.

(i) Every Newton slope \ of N satisfies 0 < X\ < 1.

(iii) If X € Q occurs as a Newton slope of N, then 1 — X occurs as a Newton slope of N
with the same multiplicity.

Remark. The necessity part is easy to verify by Proposition [2.3.18] The main difficulty lies
in proving the sufficiency part, which was initially conjectured by Manin [Man63].

Definition 2.3.20. Let A be a principally polarized abelian variety of dimension g over k.

(1) We define its Newton polygon by Newt(A) := Newt(D(A[p>])[1/p])-
(2) We say that A is ordinary if Newt(A) connects the points (0,0),(g,0), and (2g, g).
(3) We say that A is supersingular if Newt(A) connects the points (0,0) and (2g, g).

Example 2.3.21. Let A be an ordinary abelian variety of dimension ¢ over k. A priori, this
means that there exists an isogeny A[p™] — i X (Qp/Zp)?. We assert that there exists an
isomorphism
Alp™] ~ N}q)oo X (Qp/Zp)?.
By Proposition [2.1.10] we have an exact sequence
0— A[pOO]O _ A[poo] N A[poo]ét — 0.

Moreover, this sequence splits as it splits at every finite level by Proposition [1.4.11] Hence
we have a decomposition

A[poo] ~ A[poo]o % A[poo]ét.
Proposition implies that A[p>]® should correspond to the slope 0 part of Newt(A),
and thus have height g. We then deduce A[p™®]® ~ (Q,/Z,)? by the remark after Proposition
and A[p™]° ~ (A[p™]*")Y ~ i by self-duality of A[p™].

Remark. We can also argue as in the remark after Example [2.2.21] to deduce that the
deformation space of A has the structure of a formal torus of dimension g(g + 1)/2.

Proposition 2.3.22. For an abelian variety A over k, there exist a natural identification
Heio(A/W (k) = D(A[p™)).

Cris
Remark. In light of the crystalline comparison theorem as introduced in Chapter [, Theorem
this identification provides a powerful tool to study abelian varieties and their moduli
spaces, such as (local) Shimura varieties of PEL or Hodge type, using p-adic Hodge theory
and the theory of Dieudonné modules/isocrystals.
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some tech-
nical results from algebraic number theory, we prove two fundamental theorems regarding
p-divisible groups, namely the Hodge-Tate decomposition for the Tate modules and the full-
faithfulness of the generic fiber functor. The primary reference for this section is Tate’s paper
[Tat67].

3.1. The completed algebraic closure of a p-adic field
Definition 3.1.1. Let K be an extension of Q, with a nonarchimedean valuation v.
(1) We define the valuation ring of K by O :={z € K :v(z) >0 }.

(2) We say that K is a p-adic field if it is discrete valued and complete with a perfect
residue field.

Example 3.1.2. We present some essential examples of p-adic fields.

(1) Every finite extension of Q, is a p-adic field.
(2) Given a perfect field k of characteristic p, the fraction field of the ring of Witt vectors
W (k) is a p-adic field.
Remark. The fraction field of W (F,) is the p-adic completion of the maximal unramified
extension of Q,. Hence it is a p-adic field which is not an algebraic extension of Q.

For the rest of this section, we let K be a p-adic field with absolute Galois group I'x. We
also write m and k for the maximal ideal and the residue field of Of.

Definition 3.1.3. We define the completed algebraic closure of K by Cg := K; in other
words, Cg is the p-adic completion of the algebraic closure of K.

Remark. The field Cg is not a p-adic field as its valuation is not discrete. In fact, it is the
first example of a characteristic 0 perfectoid field.

Lemma 3.1.4. The action of ' on K uniquely extends to a continuous action on Cg.
PRrooF. This is obvious by continuity of the I'x-action on K. O

For the rest of this section, we fix a valuation v on Cx with v(p) = 1.

Proposition 3.1.5. The field Cg is algebraically closed.

PROOF. Let p(t) be an arbitrary non-constant polynomial over Cx. We wish to prove
that p(t) has a root in Cx. By scaling the variable if necessary, we may assume that p(t) is
a monic polynomial over Oc,.. In other words, we may write

p(t) ="+ ait™ + -+ aqg
for some a; € Oc,,. For each n, we choose a polynomial
() =1+ ar t - ag,
with a;, € O and v(a; — a;,) > dn.

Let us choose o € Oz with pi(a1) = 0. We proceed by induction on n to choose o, € O
with p,(ay) = 0 and v(ay, — ap—1) > n — 1. Since ajpn — ain—1 = (@in — a;) + (@i — Qjpn-1)
has valuation at least d(n — 1), we find v(pp(an—1)) > d(n — 1) by observing

d

pn(an—l) = pn(an—l) _pn—l(an—l) - Z(ai,n - ai,n—l)a
=1

d—i
n—1-
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Moreover, we have
d

pn(anfl) = H(anfl - ﬁn,z)
i=1
where 3,1, , B,,4 are roots of p,(t). Note that 3, ; € Of since O is integrally closed. As
v(pn(ap—1)) > d(n —1), we deduce that v(ay,—1 — ;) > n —1 for some i. We thus complete
the induction step by taking a;, := B,.;.
Since the sequence (a,,) is Cauchy by construction, it converges to an element o € Oc,, .
Moreover, for each n we find v(p(a,)) > dn by observing
d
plom) = plom) — pnlam) = Z(ai - ai,n)agiz‘
i=1
We thus have p(a)) = 0, thereby completing the proof. O

Let us now introduce the central objects for this course.

Definition 3.1.6. A p-adic representation of I'k is a finite dimensional Q,-vector space V'
together with a continuous homomorphism I'x — GL(V). We denote by Repg, (I'r) the
category of p-adic I'g-representations.

Example 3.1.7. Below are two essential examples of p-adic representations.

(1) By Proposition [2.1.14] every p-divisible group G over K gives rise to a p-adic I'k-
representation V,,(G) := T,(G) @z, Qp, called the rational Tate module of G.

(2) For an arbitrary variety X over K, the étale cohomology HY (X7, Q,) is a p-adic
I" g -representation.

Our main task in this section is to understand the p-adic I' x-representation on the rational
Tate module of a p-divisible group over K. We will make extensive use of the following notion:

Definition 3.1.8. Given a Z,[I'x]-module M, we define its n-th Tate twist to be the Z, [ k|-
module
M T (fipye0 )E™ f >
M(n = ®ZP p(ﬂp ) on orn >0,
Homgy, 0, (Tp(ppee)® ™", M) for n < 0.

Example 3.1.9. By definition, we have Zy(1) = Tp(ppee) = lim v (K'). The homomorphism
xk : I'x — Aut(Z,(1)) = Z,; which represents the I'-action on Zy(1) is called the p-adic
cyclotomic character of K. We will often simply write x instead of yx to ease the notation.

Lemma 3.1.10. Let M be a Zy[I'k|-module. For each m,n € Z, we have canonical Tk -
equivariant isomorphisms

M(m) ®z, Zy(n) = M(m +n) and M(n)" = MY(—n).
PRrOOF. This is straightforward to check by definition. O

Lemma 3.1.11. Let M be a Z,[I' k|-module, and let p : T — Aut(M) be the homomorphism
which represents the action of T'xr on M. For every n € Z the action of I'x on M(n) is
represented by x" - p.

~Y

ProOOF. Upon choosing a basis element e of Z,(n), we obtain an isomorphism M (n) =
M ®z,, Zy(n) = M given by m ® e — m. The assertion now follows by observing that the
['k-action on M(n) = M ®z, Zy(n) is given by p ® x". O
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We assume the following fundamental result about the Galois cohomology of the Tate
twists of Cg.

Theorem 3.1.12 (Tate [Tat67], Sen [Sen80]). We have canonical isomorphisms

K ifi=0o0rl,n=0
0 otherwise.

H'(Tg,Cg(n)) = {

Remark. The proof of this result requires the full power of the higher ramification theory as
well as some knowledge about the local class field theory. We refer curious readers to [BCl
§14] for a complete proof.

When 7 = n = 0, the theorem says that the fixed field of I' in Cg is K. This particular
statement has an elementary proof as sketched in [BCl Proposition 2.1.2].

We now introduce the first class of p-adic I'g-representations.

Lemma 3.1.13 (Serre-Tate). For every V € Repg, (I'x), the natural Cr-linear map

ay @ (V ®Qp (CK(—n))FK RK (CK(n) -V ®Qp Cg
nez

18 I'g-equivariant and injective.
PROOF. For each n € Z, we have a I'g-equivariant K-linear map
(V ®qg, Cx(—n))"* @k K(n) — V g, Cx(—n) ®x K(n) ~V ®q, Ck, (3.1)
which gives rise to a I'g-equivariant Cg-linear map
M (V @g, Cx(—n))" ™ @k Cx(n) — V &g, Cx
by extension of scalars. Hence we deduce that ay = @ d%}l ) is I'g-equivariant.

nel

For each n € Z, we choose a basis (vpm,n) of (V ®q, (CK(—n))FK ®K K(n) over K. We
may regard vy, as a vector in V ®q, Cx via the map (3.1)). Moreover, the source of the map
ay is spanned by the vectors (vp, ).

Assume for contradiction that the kernel of &y is not trivial. Then we have a nontrivial
relation of the form ) ¢y nvm . = 0. Let us choose such a relation with minimal length. We
may assume that ¢y, = 1 for some mg and ng. For every v € 'k we find

0= (3 emntimn) = X0 (3 emnvmn) = D (HemmX ()" = XN ™ emn) Vi

by I' g-equivariance of &y and Lemma [3.1.11} Note that the coefficient of vy, n, in the last
expression is 0. Hence the minimality of our relation implies that all coefficients in the last
expression must vanish, thereby yielding relations

rY(cm,n)X(’Y)n_nO = Cmm, for all Y c FK

Then by Lemma [3.1.11] and Theorem [3.1.12| we find ¢, , = 0 for n # ng and ¢, € K for
n = ng. Therefore our relation ) ¢ nUm,n = 0 becomes a nontrivial K-linear relation among
the vectors vy, n,, thereby yielding a desired contradiction. O

Definition 3.1.14. We say that V € Repr(FK) is Hodge-Tate if the map &y in Lemma
3.1.13|is an isomorphism.

Remark. We will see in that p-adic representations discussed in Example are

Hodge-Tate in many cases.
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3.2. Formal points on p-divisible groups

For the rest of this section, we fix the base ring R = Q. We also let L be the p-adic
completion of an algebraic extension of K, and denote by mj its maximal ideal. We are
particularly interested in the case where L = Cg.

We investigate the notion of formal points on p-divisible groups over Og.

Definition 3.2.1. Let G = li_n>1Gv be a p-divisible group over Ok. We define the group of
Or-valued formal points on G by

G(Op) = @G(OL/miOL) = @@GU(OL/W’OL)
) 1 v
Example 3.2.2. By definition, pp~(0r) = lim, pipee (O /mi0OL) is the group of elements
z € O such that v(2P" —1) can get arbitrarily large. Hence we clearly have 1+my, C 1,00 (Op).

Moreover, as the residue field of Oy, has characteristic p, we also obtain the opposite inclusion
by observing 2P — 1 = (z — 1)?" mod my. We thus find pipye(Or) 2 1+ my.

Remark. On the other hand, the group of “ordinary” Op-valued points on iy~ is given by

ling 1y (Op) = lim { & € OF : a” =1}
v v

which precisely consists of p-power torsion elements in O . We thus see that e (Of) contains
many “non-ordinary” points.

Proposition 3.2.3. Let G = li_n)le be a p-divisible group over Ok.
(1) Writing G, = Spec (A,) for each v, we have an identification
G(OL) = HomOKfcont(liil Ava OL)

v

(2) G(Or) is a Zp-module with the torsion part given by
G(OL)tors = h_H}@Gv(OL/mZOL)

v (]

(8) If G is étale, then G(Qp) is isomorphic to a torsion group G(kr) where ki, denotes
the residue field of O,

Proor. Note that we have Of = @z Or,/m'Or) by completeness of Op. We also have
lian A, = 1&12 ) A, /mtA, since each A, is m-adically complete for being finite free over O
by a general fact as stated in [Sta, Tag 031B]. We thus obtain an identification

G(Or) = limlim Homo, (Ay, O /miOp) = lim lim Homo,, (Ay JmiA,, Op/m‘Op)
(3 v ) v
~ @Hom@K(@Av/miAv,OL/miOL)
7 v
= HomOK—cont (l&n Av/miAva lin OL/mZOL)
1,0 7
= HomOK—cont (lan AU7 OL)

v

as asserted in
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Next we consider the statement Observe that G(Op) is a Z,-module since each
G(OL/m'Or) = &nGv(OL/m’(’)L) is a Z,-module by Corollary [2.1.6, Hence G(Op )tors 0only

v
contains p-power torsions. Moreover, by Corollary we have an exact sequence

0 —— Go(O1/miOL) —— GO /mi0r) 2L q(on/mior),

which in turn yields an exact sequence

0 —— lim G, (O /mi0L) —— G(OL) 2L G(oy).

1

We find that the p’~torsion part of G(Op) is given by lim G,(Or, /m‘Or), thereby deducing

the assertion by taking the limit over v.
If G is étale, we have identifications G, (O /m‘Op) = G,(Or/mT10O1) by formal étaleness
of étale morphisms as stated in [Sta, Tag 04AL], thereby obtaining

G(0Or) = limlim G, (O /m'Op) = limlim Gy (k1) = G(kr,).

1 v 1 v
We thus deduce the statement by Corollary O

Remark. Arguing as in the proof of Theorem [2.2.16] we can show that the formal scheme ¥4 :=
Spf (th A,) carries the structure of a formal group induced by the finite flat Ok -group schemes
G». Moreover, we can write the identification in as G(Or) = Homo . -formal (Spf(O1.),9).

Corollary 3.2.4. Let G be a connected p-divisible group dimension d over Or. We have a
canonical isomorphism of Z,-modules

G(OL) = HomOKfcont(OKHtlu e )th7 OL)
where the multiplication by p on the target is induced by [p,(q)-
Remark. From the above isomorphism we obtain an identification G(Or) ~ m‘éL as a set. It

is then straightforward to check that p induces the structure of a p-adic analytic group over
L on m%L by Lemma and the completeness of L.

Proposition 3.2.5. Let G = h_rr)le be a p-divisible group over Og. Then we have an exact
sequence

0—— GO(OL) EE— G(OL) EE— Gét(OL) — 0.

PROOF. Let us write G° = lim G° and G = &)ntf where G := G, /GS. We also write
G, = Spec (A,),GS = Spec (A2), and G = Spec (AS) where A, A%, and A are finite free
Ok-algebras. In addition, we define & := lim A, and </ é.— @Af}.

Proposition [2.1.10] yields an exact sequence

0 y G° y G y GO 0. (3.2)

We wish to show that the induced sequence on the groups of Op-valued points is exact. The
sequence is left exact by construction as limits and colimits are left exact in the category of
abelian groups. Hence it remains to show surjectivity of the map G(Or) — G¢(Opr). By
Proposition [3.2.3] it suffices to prove surjectivity of the map

HomOKfcont(Mv OL) - HomOKfcont(détv OL) (33)
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By the proof of Theorem [2.2.16| we have a continuous isomorphism
lim Ay >~ Og[[t1, -+, tdl]

where d is the dimension of G. Moreover, as the sequence (3.2)) canonically splits after
reduction to k£ by Proposition we obtain a continuous isomorphism

(7 @0, k)[[t1, - ,td]] = o oy k.

Arguing as in the proof of Theorem [2.2.16] we can lift the above map to a continuous homo-
morphism

[t tg)] — .

We assert that f is surjective. Assume for contradiction that coker(f) # 0. Let 9t be a
maximal ideal of &7 such that coker(f)sn # 0. Since f becomes an isomorphism after reduction
to k, we have coker(f) ®op, k = 0, or equivalently coker(f) = mcoker(f). In particular, we
find coker(f)m = mcoker(f)m C M coker(f)m. Since coker(f)on is finitely generated (by one
element) over the local ring <y, we deduce coker(f)mm = 0 by Nakayama’s lemma, thereby
obtaining the desired contradiction.

Let us now prove that f is injective. As in the previous paragraph, we find ker(f) =
mker(f) by the fact that f becomes an isomorphism after reduction to k. Let us write

S = (t1, -+ ,tq), and denote by i the image of .#7 under f. Then we have an exact
sequence

0 — ker(f)/ ker(f) N IT —— [ty 4]/ I —— o | 5T — 0.

Since /[[t1,--- ,t4]]/-#7 is noetherian, we can argue as in the preceding paragraph with
the identity m (ker(f)/ker(f) N .#7) = ker(f)/ker(f) N .#7 to find ker(f) = ker(f) N .#J. As
N;#7 =0, we deduce ker(f) = 0 as desired.

Now, since f is an isomorphism as seen above, it yields a surjective map &/ — &7t which

splits the natural map /¢ —— /. We thus deduce the desired surjectivity of the map (3.3)),
thereby completing the proof. O

Corollary 3.2.6. For ecvery x € G(Op), we have p"x € G°(Or) for all sufficiently large n.

PrOOF. This is an immediate consequence of Proposition and Proposition |3.2.5 O

Proposition 3.2.7. Assume that L is algebraically closed. Then G(Op) is p-divisible in the
sense that the multiplication by p on G(OL) is surjective.

PRrOOF. By Proposition [3.2.5] it suffices to show the surjectivity of the multiplication
by p on each G(Or) and G°(Or). The surjectivity on G*(Op) is obvious by Corollary
and Proposition Hence it remains to prove the surjectivity on G°(Op). Let us
write /¢ 1= OL][[t1,- - ,t4]] where d is the dimension of G. Since the multiplication by p on
G°(Or) =~ Homo,, —cont(&/°, Or) is induced by [p], ) on &/° as noted in Corollary we
deduce the desired surjectivity by the p-divisibility of u(G). O

Remark. If we let ¢4° denote the formal group associated to G°, the surjectivity on G°(Op)
also follows from the p-divisibility of ¢° that we remarked after Theorem [2.2.16
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3.3. The logarithm for p-divisible groups

We retain the notations in the previous subsection. Our goal in this subsection is to
construct and study the logarithm map for p-divisible groups over Og.

Definition 3.3.1. Let G be a p-divisible group over O of dimension d. Let us write &/° :=
Ok|[t1,- - ,t4]] and denote by .# the augmentation ideal of u(G).

(1) Given an Og-module M, we define the tangent space of G with values in M by
ta(M) := Homo,-moa (&£ /-#2, M),
and the cotangent space of G with values in M by
te(M) = .7 ).9% 0, M.
(2) We define the valuation filtration of G°(Or) by setting
Fil*G°(Or) :=={ f € G°(Or) : v(f(z)) > M for all z € .7 }

for all real number A > 0, where we identify G°(Or) = Homo —cont(#°,Or) as
described in Corollary

Remark. We may identify ¢ and t(, respectively with the tangent space and cotangent space
of the formal group ¥, induced by p.

Lemma 3.3.2. Let G be a p-divisible group over Ok . For every f € Fil* G°(Or), we have
pf € Fil* G°(Or) where k = min(A + 1,2\).

PROOF. Let .# denote the augmentation ideal of u(G). Lemma [2.2.14|yields [p],q)(z) =
px + y for some y € .#2. We thus find

(pf)(x) = f([Plue) (@) = flpz +y) = pf(z) + f(y),

which implies v((pf)(z)) > min(\ + 1,2)) as desired. O

Lemma 3.3.3. Let G be a p-divisible group over Ok, and denote by . the augmentation

ideal of u(G). Let us choose arbitrary elements f € G(Or) and v € .#. Then lim W
n—0o0 p

exists in L, and equals zero if x € 92.

PrOOF. By Lemma [2.2.14|we may write [p,q)(z) = pz+y for some y € #2. In addition,
by Corollary [3.2.6| we have p" f € G°(Op) for all sufficiently large n. Then an easy induction
i

using Lemma [3.3.2 shows that there exists some constant ¢ with p"f € Fil"*t¢G°(Op) for all
sufficiently large n. Hence for all sufficiently large n we find

@ H@) ")) _ " HPlue (@) @"HE) _ "))

pn+1 pn pn+1 pn pn+1 ’

which in turn yields

. ((p”“f)(fC) (" f)(x)
p

) >2ntc)— (n+1)=n+ (2 1)

pn—l-l n
T
Therefore the sequence (W) converges in L for being Cauchy. Moreover, if z € .#2
the sequence converges to 0 as
(" f)(=)

for all sufficiently large n. O
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Lemma, allows us to make the following definition.

Definition 3.3.4. Let GG be a p-divisible group over Of, and let .# denote the augmentation
ideal of p(G). We define the logarithm of G to be the map
logg : G(OL) — ta(L)
such that for every f € G(Op) and x € #/.#% we have
(@)
g6 () = Jim D)

where Z is any lift of x to 7.

Remark. For curious readers, we describe an alternative construction of log.; using the theory

of p-adic analytic groups. As remarked after Corollary G°(Op) carries the structure of

a p-adic analytic group over L. Moreover, we can identify its Lie algebra with ts(L). Hence

we have a map logge : G°(Or) — te(L) induced by the p-adic logarithm on the ambient

_ logge (p"f)
p'I’L

analytic group. We then obtain logs : G(Or) — tg(L) by setting logs(f) : for

any f € G(Or) where n is chosen such that p" f belongs to G°(Op,).

Example 3.3.5. Let us provide an explicit description of log#poo. As seen in Example [2.2.12
we have iz [p™] = pipeo. Corollary then yields an identification

ppee (Or) = Homoy —cont (OL[[t]], OL) = mp =1 +my,

where the last two isomorphisms are given by f — f(¢) and = — 1+ x. Note that this
identification agrees with the identification obtained in Example [3.:2.2] In addition, writing
S := (t) for the augmentation ideal of iz  we find

tpyoo (L) = Homo,moa (7 /7%, L) = L.
We thus have a commutative diagram

logupOo
ppee (Op) ——— b0 (L)

P10 | 2|a—a0 (34)
l1+4m;, ——— L
Let us identify log oo with the bottom arrow. We also take an arbitrary element 14z € 1+my,.
As each f € pp~(Op) satisfies
") = £ (05, (0) = F (AL+D7 =1) = 1L+ FOF 1,
the diagram [3.4] yields an expression
IR C ) LA NN AN R A
log, .. (1+z) = nhi& = nl;r{:oz; o x'. (3.5)
1=
In addition, for each ¢ and n we have
LN DT ) i ) = () 1))
p\ i i il '
Since the numerator is divisible by p”, we obtain an estimate

v (1 (p.n)xi - (_1)_1“"> > 4 iv(x) — v(il) > n+ i) — —

P\ i i p—1"
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Hence we may write the expression (3.5 as

(-1

',

logﬂp"o (1 + HZ') = Z

=1

o0
which coincides with the p-adic logarithm.

Let us collect some basic properties of the logarithm for p-divisible groups.

Proposition 3.3.6. Let G be a p-divisible group over Ok . Denote by & the augmentation
ideal of p(QG).
(1) logq is a group homomorphism.

2) logs is a local isomorphism in the sense that for each real number A > 1 it induces
G
an isomorphism

Fil* G°(0) = {reta(l):v(r(z)) >\ for all z € )7 I8
(8) The kernel of logq is the torsion subgroup G(Of )iors of G(Op).
(4) logg induces an isomorphism G(Or) ®z, Qp ~ tg(L).

PROOF. Let us write &7° := Og|[t1, - ,t4]] where d is the dimension of G. Take arbitrary
elements f,g € G(Or) and = € .#. Arguing as in Theorem [1.3.10} we find

G (r)El@r+2R@1+ IRy S,

Hence for all sufficiently large n we have

" (f +9)(@) = (P"f +p"9)(x) = (P"f @ p"g) o p(x) = (P"f)(2) + (p"9)(x) +y
for some y € (p"f)(#) - (p"g)(#). Then a similar estimate as in Lemma [3.3.3] shows

fim PP H9)@) @) L ("))

n—00 p" n—00 pn n—00 pn !

thereby implying that logs is a homomorphism.

Let us now fix an arbitrary real number A > 1 and write
Fil* tq(L) == {reteL) v(r(z)) > Nforallz € .7/ 7%} .

If f e Fil) G°(Or), Lemma [3.3.2] yields an estimate v <(p;:2(:c)> > Afor all zx € £ and
n > 0, thereby implying logs(f) € Fil* tg(L). It is then straightforward to verify that logg
on Fil* G°(Or) admits an inverse Fil* tg(L) — Fil* G°(Op) which sends each 7 € Fil* tg(L)

to the unique f € Fil* G°(Oy) with f(t;) = 7(t;). Therefore we deduce the statement

Next we show ker(log;) = G(OpL)tors as asserted in We clearly have G(Or)tors C
ker(logc) since tg(L) is torsion free for being a vector space over L. Hence we only need to
establish the reverse inclusion ker(log,;) € G(Op). Let f be an element in ker(logs). By
we have p" f € ker(logs) for all n. Moreover, Corollary and Lemma together yield
p"f € Fil! G°(Oy) for all sufficiently large n. We then find p" f = 0 for all sufficiently large n
by thereby deducing that f is a torsion element as desired.

Now readily implies the injectivity of the map G(Or) ®z, Q, — tg(L) induced by
log;. We also deduce the surjectivity of the map from by observing that every element
T € tg(L) satisfies p" € Fil' tg(L) for all sufficiently large n. O
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3.4. Hodge-Tate decomposition for the Tate module

In this subsection, we derive the first main result for this chapter by exploiting our accu-
mulated knowledge of finite flat group schemes and p-divisible groups.
Let us first present some easy but useful lemmas.

Lemma 3.4.1. Let G = h_r)nGU be a p-divisible group over Og. For each v we have canonical
isomorphisms

GU(F) = Gy(Ck) = Go(Ocy )

PRrooOF. Since Cg is algebraically closed as noted in Proposition the first isomor-
phism follows from the fact that the generic fiber of G, is étale by Corollary [1.3.11] The

second isomorphism is a direct consequence of the valuative criterion. O

Lemma 3.4.2. For every p-divisible group G over Ok we have

G(Oc,)'® = G(Ok) and tq(Cr)'x = tg(K).

PrOOF. By Theorem [3.1.12( we have (CEK = K and O((F:g = (Ok. Hence the desired
identifications immediately follow from Proposition and Definition [3.3.1 O

Lemma 3.4.3. Given a p-divisible group G over Ok we have
oo
N P"C°(0x) = 0.
n=1

PRrROOF. As the valuation on K is discrete, there exists a minimum positive valuation ¢;
indeed, we have 6 = v(7) where 7 is a uniformizer of K. Then an easy induction using Lemma

yields p"G°(Ok) C Fil™ G°(Ok) for all n > 1. We thus deduce the desired assertion
by observing m Fil" G°(Ok) = 0. O

n=1

The main technical ingredient for this subsection is the interplay between the Tate modules
and Cartier duality.

Definition 3.4.4. Let G = lim G, be a p-divisible group over Ok. We define the Tate module
of G by
T(G) i= Ty(G xoy K) = lim G, (K),
and the Tate comodule of G by
D,(G) := lim G, (K).

Remark. The Tate comodule ®,(G) is nothing other than G(K), where G is regarded as a
fpqc sheaf.

Example 3.4.5. We have T),(jp>~) = Z,(1) as noted in Example In addition, ®(pp~) =

lim 40 (K) = ppee (K) is the group of p-power roots of unity in K.

Proposition 3.4.6. Given a p-divisible group G over Ok, Cartier duality induces natural
I' ik -equivariant isomorphisms

T,(G) = Homyz, (Tp(G’v), Zp(1)) and ®,(G) = Homg, (Tp(GV),,upoo (f)) .
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PROOF. Note that every finite flat group scheme over K is étale by Corollary [1.3.11} For
each v we have a natural identification

Gy(K) = (Gy)"(K) = Homg ., (G5 (1)) = Hom(GY/(K), pye (K)) (3.6)
by Theorem Lemma and Proposition We then obtain a I'i-equivariant

isomorphism
T,(G) = lim G, (K) = lim Hom (G (), py» (K))
— Homg, (lim G (K), lim p1 ()
= Homg, (T,(G"), Zy(1)).
In addition, by writing (3.6) as G, (K) = Hom(GY (K), ppe (K )) we find another I g-equivariant
isomorphism
0,(G) = lim G, (K) = lim Hom(G (K), 1y (K)
> Homy, (lim G (K), i ()
= HomZp (TP(GV)7 Hpoo (?))a
thereby completing the proof. O

Proposition 3.4.7. Let G be a p-divisible group over Ox. We have an exact sequence

0 —— ©,(G) —— G(Oc,) 2% C 0.

PRrROOF. Since G(Oc, ) is p-divisible by Proposition and Proposition we obtain
the surjectivity of log, by Proposition [3.3.6f We then use Proposition [3.3.6] Proposition [3.2.3]
and Lemma [3.4.1] to find

ker(logg) = G(Oc, Jeons 2 limlim Gy (Oc, /m'Oc,.) = lim G, (Oc,.) = 1im G,y (K) = ,(C),

thereby completing the proof. O
Example 3.4.8. For G = py~ Proposition yields

0 — ppee(K) —— 1+ mg,, —— Cg 0.
by Example and Example [3.4.5

Proposition 3.4.9. Every p-divisible group G over Ok gives rise to a commutative diagram
of exact sequences

0 3,(G) G(Oc, ) lgc ta(Cx) —— 0
Zi la lda
0 — Homg, (T,(GY), pp=(K)) — Homgz, (T,(G¥),1+ m¢,) — Homg, (T,(G"),Ck) — 0

where o and da are T g -equivariant and injective.

PROOF. The top row is as described in Proposition [3.4.7l The bottom row is induced by
the short exact sequence in Example and is exact since T,,(G") is free over Z,. The left
vertical arrow is the natural I'g-equivariant isomorphism given by Proposition [3.4.6
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Let us now construct the maps « and da. As usual, we write G = liL>nGU where G, is a
finite flat Og-group scheme. Lemma and Lemma together yield

T,(GY) = lim GY (K) = lim G (Oc,)
= lim Homo,,gep ((G)ocye (1), )
= Homp_div grp (G XOk O(CK, (,LLpoo)(gK) . (37)
We define the map o : G(Oc, ) — Homy, (T,(GY), 1+ mc, ) by setting
a(g)(u) == uoc,. (9) for each g € G(Oc, ) and u € T,(G"),

where up. : G(Ocy) = pp(Ocy) = 14 mg, is the map induced by u under the identifi-
cation ([3.7). We also define the map da : t¢(Cx) — Homg, (T,(G"),Ck) by setting

do(z)(u) = duc, (2) for each 2 € t¢(Ck) and u € T,(G"),

where duc,, : t¢(Cx) — t,.(Ck) = Ck is the map induced by u under the identification
B2).

The maps o and da are evidently Zp-linear and I'k-equivariant by construction. The
commutativity of the left square follows by observing that the left vertical arrow can be also

defined as the restriction of & on G(O¢,) = ®,(G). The commutativity of the right square
amounts to the commutativity of the following diagram

lo
G(Oc,) te tc(Cr)

l logupoo \L

e (Ocy) = 1+ mey ——— ty0 = Ck

which is straightforward to verify by definition; indeed, the logarithm map yields a natural
transformation between the functor of Oc, -valued formal points and the functor of tangent
space with values in K.

It remains to prove that a and da are injective. By snake lemma we have Z,-linear
isomorphisms

ker(a) ~ ker(da) and coker(a) ~ coker(da). (3.8)
Hence it suffices to show that da is injective.

As both t¢(Ck) and Homg, (T,(GY),Ck) are Q,-vector spaces, the Zy-linear map do is
indeed Q)-linear. Therefore both ker(da) and coker(da) are Qp-vector spaces. The isomor-
phisms (3.8]) then tells us that both ker(a) and coker(«) are Q,-vector spaces as well.

We assert that « is injective on G(Of). Suppose for contradiction that ker(a) contains
a nonzero element g € G(Ok). As ker(a) is torsion free for being a Q,-vector space, we may
assume g € G°(Ok) by Corollary Let us define the map

a® : G°(Oc, ) — Homg, (T,((G°)Y), 1+ me,)

in the same way we define the map «. Since the natural map 7,(GY) — T,((G°)V) is surjective,
we obtain a commutative diagram

GO(OCK) € G(OCK)

lao la

Homg, (T,((G°)¥), 1 + mc, ) < Homg, (T,(GY), 1+ mg,)
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where both horizontal arrows are injective. In particular, we have g € ker(a®) N G°(Ok).
Moreover, Lemma yields ker(a®) N G°(Ok) = ker(a®)'%, which is a Q,-vector space
since ker(a®) is a Qp-vector space by the same argument as in the preceding paragraph.
Therefore for every n € Z there exists an element g, € ker(a®) N G°(Ok) with g = p"gn.
However, this means g = 0 by Lemma [3.4.3] yielding the desired contradiction.

Next we show that da is injective on tg(K). Since logq(G(Ok)) ®z, Qp = tg(K) by
Proposition it is enough to show the injectivity on log,(G(Ok)). Choose an arbitrary
element h € G(Ok) such that logs(h) € ker(da). We wish to show that log,(h) = 0. As
the isomorphism ker(a) ~ ker(da) in is induced by logg, we can find A’ € ker(a) with
log:(h) = logg(h'). Then by Proposition we have h — I/ € ker(logg) = G(Ocy )torss
which means that there exists some n with p"(h — h’') = 0, or equivalently p"h = p™h'. We
thus find p"h € ker(a) N G(Ok), which implies p”h = 0 by the injectivity of a on G(Ok).
Hence we have h € G(Oc )tors, thereby deducing logg(h) = 0 by Proposition [3.3.6]

As tg(K) = tg(Cg)'x by Lemma we can factor da as

do : tg((CK) = tg(K) Rk Cxg — HomZp(Tp(GV),(CK)FK Rk Cx — HOmZP(Tp(GV), (CK)

The first arrow is injective by our discussion in the preceding paragraph. The second arrow
is injective by Lemma [3.1.13|since we have a canonical isomorphism

Homgz, (Tp(Gv), Ck) = Homgz, (Tp(GV),K) QK Cx

due to the freeness of T),(GY) over Z,. Hence we deduce the injectivity of da as desired,
thereby completing the proof. O

Theorem 3.4.10 (Tate [Tat67]). Let G be a p-divisible group over O. Define o and do
as in Proposition |3.4.9. Then their restrictions to the ' -invariant elements yield bijective
maps

ag : G(Og) — Homzp[pK](Tp(GV), 14+ mc,),

dOzK . tg(K) — HOIan[FK](Tp(Gv), CK)

PRrROOF. By Proposition [3.4.9| we have a commutative diagram of exact sequences

0 —— G(Oc,) —— Homg, (T,(GY),1+ m¢, ) — coker(a) —— 0

o | lz

0 —— ta(Cx) —%— Homy, (T,(G"),Cx) —— coker(da) — 0
where the bijectivity of the right vertical arrow follows from snake lemma as noted in ([3.8)).
Taking I'g-invariants of the above diagram yields

0 —— G(Og) =% Homy, r,(T,(GY),1 4 mg, ) — coker(a)l'®

| | |

0 —— ta(K) —25 5 Homy, 1, (Tp(GY), Cx) ——> coker(da)"x
which implies the injectivity of ax and dag. Moreover, by the exactness of the middle terms
we obtain a commutative diagram

coker(af) «—— coker(a)'

! I

coker(day) — coker(da)'®
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where the injectivity of the left vertical arrow follows from the injectivity of the other three
arrows. Hence we only need to prove coker(dag) = 0, or equivalently the surjectivity of day.

Let h and d be the height and dimension of G, and let d¥ be the dimension of GV. Note
that the Cg-vector spaces

V := Homg, (T,(G),Ck) and W := Homg, (T,(G"),Ck)
are both h-dimensional. The injectivity of dajy yields
dimg (WFE) > dimg (tg(K)) = d (3.9)

where equality holds if and only if dag is surjective. By switching the roles of G and GV we
also find dimg (V%) > d¥, thereby obtaining

dimg (VIE) + dimg (WHE) > d +d” = h (3.10)
by Theorem [2.2.19
By Proposition we have a I'g-equivariant perfect pairing of Z,-modules
TH(G) x Ty(G¥) = Zy(1).
The scalar extension to Cg of the dual pairing yields a I'g-equivariant Cg-linear pairing
VxW — Cg(-1), (3.11)

which is perfect since both T,(G) and T,(G") are free over Z,. The image of VI'x x WTx
should lie in Cx(—1)'%, which is zero by Theorem [3.1.12| This means that V% @ Cx and
WTK @ Cg are orthogonal under the perfect pairing (3.11)), which further implies

dimg (V%) 4 dimg (WIK) < dime,. (V) = h.

We thus have equality in (3.10), which in turn implies equality in (3.9) and thereby yielding
the desired surjectivity of dag. O

Corollary 3.4.11. For every p-divisible group G of dimension d over Ok, we have an identity
d = dimg (Homg, r,(Tp(G"), Ck)) = dimg (Tp(G) ®z, Cx(—1))' <.

PROOF. The first equality immediately follows from Theorem [3.4.10] The second equality
follows by an identification

T,(G) ®z, Cx(~1) = Homg, (T,(G"), Zy(1)) ®z, Ck(~1) = Homg, (T,(G"), Ck)
where the isomorphisms are given by Proposition and the freeness of T,(G") over Z,. O

We are finally ready to prove the first main result for this chapter.

Theorem 3.4.12 (Tate [Tat67]). Let G be a p-divisible group over Ok . There is a canonical
isomorphism of Cx[I'k]-modules

Hom(T),(G),Ck) = tav(Ck) @ t5H(Cr)(—1).
PRrROOF. Theorem [3.4.10] yields natural isomorphisms
t(Cxk) = Homy, (T,(GY),Ck)'* ®k Ck,
tav(Ck) = Homg, (T5(G),Cx)" ¥ @k Ck.

Moreover, the proof of Theorem |3.4.10|shows that t¢(Cg) and tgv(Cg) are orthogonal under
the perfect pairing

HOIHZP(TP(G), (CK) X Homzp (Tp(Gv), (CK) — (CK(—l)
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as constructed in (3.11f), with equality
dimc,, (t(;((CK)) + dimg,, (tav ((CK)) = dimg,, (HOII]ZP (Tp(G), Ck)).

This means that t¢(Ck) and tgv(Cg) are orthogonal complements with respect to the above
pairing, thereby yielding an exact sequence

0 —— tav(Cx) —— Homg, (T)(G), Cx) —— t5(Cx)(~1) — 0 (3.12)

where for the last term we use the identification Homc, (t¢(Ck), Cx(—1)) = t5(Ck)(—1)
that follows by observing that tf,(Ck) is the Cx-dual t¢(Cg). Writing d := dimc,, (t¢(Ck))
and d" := dimc, (tgv(Ck)) we find
Bxth (45 (C)(=1), b (C)) = Bxth, g (Cre(—1)24, €5
~ H'(Tg,Cx(1))%% =0
by Theorem [3.1.12] thereby deducing that the exact sequence (3.12)) splits. Moreover, such a

splitting is unique since we have
\
Home,, 1] (t6(Cx ) (—1), tav (Ck)) =~ Home ) (Ci (—1)®47, C3Y)
~ HO(Tk,Cx (1))8% =0
by Theorem [3.1.12, Hence we obtain the desired assertion. O

Definition 3.4.13. Given a p-divisible group G over O, we refer to the isomorphism in
Theorem [3.4.12| as the Hodge-Tate decomposition for G.

Corollary 3.4.14. For every p-divisible group G over Ok, the rational Tate-module

Vo(G) = V(G X0k K) = TH(G) @z, Qp
1s a Hodge-Tate p-adic representation of I'k .

PROOF. As the Cg-duals of tov(Cg) and tf,(Ck) are respectively given by t¢ (Ck) and

t(Cg), Theorem [3.4.12] yields a decomposition

V}?(G) ®Q, Ck = t*GV (Cx) ®ta(Ck)(1).
Then for each n we find

r .
(Vo(@) ®q, Cr(=n)) “ = {16(Cxk)  ifn=1,
0 otherwise,

by Theorem [3.1.12] The assertion is now obvious by Definition [3.1.6 O

Let us conclude this subsection with an geometric application of Theorem [3.4.12

Proposition 3.4.15. Let A be an abelian variety over K with good reduction. Then we have
a canonical T i -equivariant isomorphism

H}(Ax, Q) ®g, Cx = P Hi(A,Qi;/K) @K Cr(—j).
i+j=n

PROOF. Let AV denote the dual abelian variety of A. Since A has good reduction, there
exists an abelian scheme A over Ok with Ax = A. Then we have T,(A[p™]) = T,(A[p*>])
by definition, and AY[p™] = A[p>]Y as noted in Example In addition, we have the

following standard facts:
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(1) There is a canonical isomorphism
Hgt(AFv Qp) = Homyz, (Tp(A[p™1), Zyp) ®z, Qp.
(2) The formal completion of A along the unit section gives rise to the formal group law
u(AP>]).
(3) There are canonical isomorphisms
HOY(A, QL/K) = 1r(A) and HY(A,04) = t,(AY)

where t}(A) and t.(A) respectively denote the cotangent space of A and tangent
space of AV (at the unit section).

(4) We have identifications
HE (A Q) =\ Hi(Ag Q)
i j ~ A° j

H'(A, Q) )= \ H'(A,04) @ /\ H (4,2} )).

The statements and together yield identifications
HO(A, i) = ooy (K) and HY(A,04) =t gy (K).
Hence Theorem yields a canonical I'x-equivariant isomorphism
Hy(Az, Q) ®g, Cx = (H'(A,04) @k Cr) & (H(A, Q) @ Cre(=1)).

We then obtain the desired isomorphism by O

Remark. Proposition [3.4.15|is a special case of the general Hodge-Tate decomposition the-
orem that we introduced in Chapter [, Theorem [[.2.1] The original proof by Faltings in
[Fal88] relies on the language of almost mathematics. Recently, inspired by the work of
Faltings, Scholze [Sch13| extended the Hodge-Tate decomposition theorem to rigid analytic
varieties using his theory of perfectoid spaces. A good exposition of Scholze’s work can be
found in Bhatt’s notes [Bha).

Corollary 3.4.16. For every abelian variety A over K with good reduction, the étale coho-
mology H},(Az,Qp) is a Hodge-Tate p-adic representation of I'k.

ProOOF. For each j € Z we find

(HZ(Ag, Qp) ®q, Cx(j)) " =

L JHIAQ ) if0<j<n,
0 otherwise

by Proposition [3.4.15| and Theorem [3.1.12] Hence we deduce the desired assertion by Defini-
tion [3.1.6 0

Remark. Corollary [3.4.16| readily extends to an arbitrary proper smooth variety X over K,
as for each j € Z the general Hodge-Tate decomposition theorem and Theorem [3.1.12| together

yield an identification
n WTK A~ HY™ (X, Q%) if0<j<n,
(Hét(va Q) ®q, (CK(])) K o~ X/K '
0 otherwise.

Moreover, the above identification shows that Hf (X7, Q) recovers the Hodge number (and
Hodge cohomology) of X. This is a p-adic analogue of the fact from the classical Hodge theory
that the Hodge numbers are topological invariants of a smooth proper variety over C.
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3.5. Generic fibers of p-divisible groups

The main focus of this subsection is to prove the second main result for this chapter,
which says that the generic fiber functor on the category of p-divisible groups over Ok is fully
faithful.

We assume the following technical result without proof.

Proposition 3.5.1. Let G = lim Gy, be a p-divisible group of height h and dimension d over
Ok. Let us Gy, = Spec (A,) where A, is a finite free O -algebra. Then the discriminant ideal

of A, over Ok 1is generated by pd”phv

Remark. For curious readers, we briefly sketch the proof of Proposition Let disc(A,)
denote the discriminant ideal of A, over Og. By Proposition [2.1.5] we have a short exact
sequence

0 > G Guy1 > Gy 0.

From this we can deduce a relation disc(Ay11) = disc(A,)P" disc(A4;)P"", thereby reducing our
proof to the case v = 1. Moreover, if we write G = Spec (AJ) we can find disc(AJ) = disc(A;)
from the connected-étale sequence of G1. Hence it suffices to consider the case where G
is connected. Let us write & := Ogl[t1, - ,tq]] and & = (t1,--- ,tqy). Then we have
Ay~ Ok Dt ) &7 as shown in the proof of Proposition Therefore we can compute
disc(A1) by the discriminant ideal of o7 over [p], () (7). However, computing the discriminant
ideal of .« over [p],()(#/) turns out to be extremely technical; the best reference that we can
provide here is Haines’” notes [Hail §2.3]

Our main strategy is to work on the level of Tate modules. The key ingredient is the fact
that, for p-divisible groups over Ok, the maps on the generic fibers are completely determined
by the maps on the Tate modules by Proposition Here we present two consequences
of this fact as preparation for the proof of the main result.

Lemma 3.5.2. Let f : G — H be a homomorphism of p-divisible groups over Og. If the
restriction of f on the generic fibers is an isomorphism, then f is an isomorphism.

PROOF. Let us write G = limG, and H = lim H, where G, = Spec (Ay) and H, =
Spec (B,) are finite flat group schemes over Ok. Let o, : B, — A, be the map of Ox-algebras
induced by f. We wish to show that «, is an isomorphism. Since a, ® 1 : B, ®p, K —
Ay ®o, K is an isomorphism, «, must be injective by the freeness of B, over O. Hence it
suffices to show that A, and B, have the same discriminant ideal over Og.

As the generic fibers G xp,, K and H xo, K are isomorphic, we have T,,(G) ~ T),(H).
In particular, by Corollary [3.4.11] we find that G and H have the same height and dimension.
The desired assertion now follows from Proposition [3.5.1 O

Remark. As the proof of Lemma [3.5.2 shows, Corollary [3.4.11] and Proposition [3.5.1] are the
main technical inputs for our main result in this subsection. They reflect Tate’s key insight
that the dimension of a p-divisible group should be encoded in the Tate module. Theorem
was indeed discovered as a byproduct in an attempt to verify his insight.

Proposition 3.5.3. Let G be a p-divisible group over Ok, and let M a Zy-direct summand
of T,(G) which is stable under the action of I'.. There exists a p-divisible group H over Ok
with a homomorphism v : H — G which induces an isomorphism T,(H) ~ M.

PROOF. As usual, let us write G = lii>nGU where G, is a finite flat group scheme over
Ok. By Proposition [2.1.14] the submodule M of T,(G) gives rise to a p-divisible group
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H = hmH over K with a homomorphism H—G X o, K which induces a closed embedding
Ty - H@ — Gy Xo, K at each finite level. Let h be the height of H and let H, denote
the scheme theoretic closure of H, in G,. We then quickly verify that H, is a finite flat
group scheme of order p¥". Moreover, the closed embedding H, — H, extends to a closed
embedding H, — H, .

Let us now consider the quotient H,,, /H,. Observe that [p] factors through the unit
section on the generic fiber Hv+1 / H,~H =H [p]. Passing to the scheme theoretic closure,
we find that [p] also factors through the unit section on H,,,,/H,. Therefore [p]y, ., induces
a homomorphism

Oy : ﬂv+2/ﬂv+1 - ﬂerl/ﬂv

which yields an isomorphism on the generic fibers. Let us write H,,,,/H, = Spec (B,) where
B, is a finite free Og-algebra. The map B, — B,t1 induced by 9, is injective, as it becomes
isomorphism upon tensoring with K. Hence the B,’s form an increasing sequence of Og-
orders in the K-algebra B ®o, K. In addition, since B1 ®p, K is finite étale by Corollary
we adapt the argument of [AM94] Proposition 5.17] to deduce that the integral closure
of Ok in B; ®p, K is noetherian. Therefore there exists some vg such that B, ~ B, for
all v > vg, or equivalently ¢, is an isomorphism for all v > vg.

Let us set H, := H,,,,,/H,,. We have a closed embedding H, < H,;1 induced by the
closed embedding H, ., ~—— H, ;. We assert that H := lim H, is a p-divisible group

over Ok. By construction, H, is a finite flat Ox-group scheme of order p**. Moreover, we
have a commutative diagram

’]

Hyp = ﬂvo—l-v—i-l/ﬂvo E— ﬂvo—kv—&—l/ﬂvo = Hoy+1
ﬁvo—l-’u—i-l/ﬂvo—&—v R ﬂvo—&—l/ﬂvo =H

where the bottom arrow is given by d,,0- - -00y,+,. We then find that the kernel of [p”] on H,41
is equal to the kernel of the left vertical arrow, thereby deducing H,1[p"] = H,, ,,,/H,, = Hy.

We now define a homomorphism ¢, : H, — G, by the composition

[p*]

HU — ﬂvo-}-v/ﬂyo ﬂy € G’U'

It is straightforward to check that the maps ¢, give rise to a homomorphism ¢ : H — G.
Moreover, on the generic fibers it induces a map

~ ~ V0 ~
Hyy1v/Hy, p ]> H, - Gy X0 K

where the first arrow is an isomorphism by the p-divisibility of H. Hence we find that ¢
induces an isomorphism T),(H) ~ T,,(H) ~ M, thereby completing the proof. O

Let us now prove the second main result of this chapter.

Theorem 3.5.4 (Tate [Tat67|). For arbitrary p-divisible groups G and H over Ok, the
natural map

Hom(G,H) — Hom(G xp, K,H xp, K)

1s bijective.
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PROOF. Let us write G = limG, and H = lim H, where G, = Spec (A,) and H, =
Spec (B,) are finite flat group schemes over Of. Consider an arbitrary homomorphism f~‘:
G xo, K — H xp,, K. We wish to show that f uniquely extends to a homomorphism
f:G— H.

Let o @ By ®o, K — A, ®0, K be the map of K-algebras induced by f As B, is
free over Ok, there exists at most one Og-algebra homomorphism «,, : B, — A, such that
ay, ®1 :~&v. Hence we deduce that there exists at most one homomorphism f : G — H that
extends f.

It remains to construct an extension f: G — H of ]7 Recall that T,,(G xp, K) =T,(G)
and T,(H xo, K) = T,(H) by definition. Let 7 : T,,(G T,(H) be the map on the Tate

) —
modules induced by f. Denote by M the graph of 7 in T),(G) & T,(H). Clearly M is a Z,[I'k]-
submodule of T),(G) & T),(H). Moreover, the quotient (T,(G) & T,,(H))/M is torsion-free as
there is an injective Zj,-linear map

(Tp(G) & T(H))/M — T,(H)

defined by (x,y) — y — 7(x). Since Z, is a principal ideal domain, we find that (7,(G) &
T,(H))/M is free over Z,, thereby deducing that the exact sequence

0 M » Tp(G) @ T(H) —— (T,(G) @ T,(H))/ M —— 0

splits. This means that M is a Z,-direct summand of T),(G) & T,,(H) = T,(G xo, H). Hence
Proposition yields a p-divisible group G’ over Ok with a homomorphism ¢ : G’ —
G X0, H which induces an isomorphism 7,(G’) ~ M. Let us now consider the projection
maps 7 : G Xp, H — G and m : G Xp, H — H. The map m o ¢ induces an isomorphism
T,(G") ~ T,(G) by construction, and thus induces an isomorphism on the generic fibers by
Proposition Hence Lemma [3.5.2 implies that 71 o ¢ is an isomorphism. We then find

that f := m 0t o0 (m o¢)~! induces the map 7 on the Tate modules by construction, and
thereby extends f by Proposition [2.1.14 O

Remark. As a related fact, the special fiber functor on the category of p-divisible groups
over O is faithful. In other words, for arbitrary p-divisible groups G and H over Og, the
natural map

Hom(G, H) — Hom(G xo, k, H X0, k)
is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Theorem remains true if the base ring O is
replaced by any ring R that satisfies the following properties:

(i) R is integrally closed and noetherian,

(ii) R is an integral domain whose fraction field has characteristic 0.

In fact, it is not hard to deduce the general case from Theorem by algebraic Hartog’s
Lemma.

Corollary 3.5.5. For arbitrary p-divisible groups G and H over Ok, the natural map
Hom(G, H) — Homg, p,(T,(G), Tp(H))
1s bijective.

PROOF. This is an immediate consequence of Proposition and Theorem O
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We conclude this section by stating a fundamental theorem which provides a classification
of p-divisible groups over Ok when K is unramified over Q,. We write W (k) for the ring of
Witt vectors over k.

Definition 3.5.6. A Honda system over W (k) is a Dieudonné module M over k together
with a W (k)-submodule L such that ¢,; induces an isomorphism L/pL ~ M /oy (M).

Theorem 3.5.7 (Fontaine [Fon77|). If p > 2, there exists an anti-equivalence of categories
{ p-divisible groups over W (k) } — { Honda systems over W (k) }

such that for every p-divisible group G over W (k) with the mod p reduction G := G Xw k) K,
the Dieudonné module of the associated Honda system coincides with D(G).

Remark. Let A be an abelian variety over K with good reduction. This means that there
exists an abelian scheme A over Ok with Ax = A. As noted in the proof of Proposition
3.4.15] we have canonical identifications

H;Lt K Qp /\ K7 Qp)
Helt( K @p) = HomZp( p(A[POO])va) Xz, Qp-
Hence Corollary implies that the I'g-action on H}, (A%, Q)) is determined by A[p>].

Let us now assume that K is an unramified extension of Q, with p > 2. Then we can
identify O with the ring of Witt vectors over k. Therefore we deduce from Theorem [3.5.7]
that A[p*>] is determined by the Dieudonné module D(Ag[p>°]) over k equipped with some
filtration. This implies that the study of the I'g-action on HZ (Ax, Q) is equivalent to the
study of the Dieudonné module D(Ag[p>]) over k equipped with some filtration.

Note that our discussion in the preceding paragraph recovers the toy example that we
described in of Chapter [[] as a special case. Furthermore, it turns out that the canonical
isomorphism

HL(Ax/O) = D(A[p))
that we remarked after Example is compatible with the filtrations on both sides. Hence
we can rephrase the conclusion of the preceding paragraph as an equivalence between the study
of the I'-action on HZ (A, Q) and the study of H_; (Ar/Ok).

The discovery of this equivalence is what motivated the “mysterious functor” conjecture

and ultimately led to the crystalline comparison theorem as stated in Conjecture [1.2.3] and
Theorem [I.2.4) of Chapter [[} In fact, in light of the canonical isomorphism

Hi 'Ak/OK /\ Crls Ak/OK)

the equivalence that we discussed above can be realized as a special case of the crystalline
comparison theorem.

CI'lS (



CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

In this section, we discuss some general formalism for p-adic period rings and period
functors, as originally developed by Fontaine in [Fon94]. Our primary reference for this
section Brinon and Conrad’s notes [BC| §5].

1.1. Basic definitions and examples

Throughout this chapter, we let K be a p-adic field with the absolute Galois group 'k,
the inertia group Ig, and the residue field k. We also denote by x the p-adic cyclotomic
character of K as defined in Chapter |l Example [3.1.9

Definition 1.1.1. Let B be a Q,-algebra with an action of I'x,. We denote by C' the fraction
field of B, endowed with a natural action of ' which extends the action on B. We say that
B is (Qp, ' )-regular if it satisfies the following conditions:

(i) We have an identity B'x = Ok,
(ii) An element b € B is a unit if the set
Qp-bi={c-b:ceQ,}
is stable under the action of I'k.

Remark. For any field F' and any group G, we can similarly define the notion of (F, G)-regular
rings. Then the formalism that we develop in this section readily extends to (F,G)-regular
rings. In particular, the topologies on Q, and I'r do not play any role in our formalism.

Example 1.1.2. Every field extension of Q, with an action of I'i is (Qp,I'x)-regular, as
easily seen by Definition [I.1.1]

Definition 1.1.3. Let B be a (Q,,I'x)-regular ring. Let us write E := BYx | and denote by
Vecg the category of finite dimensional vector spaces over E.

(1) We define the functor Dp : Repg, (I'x) — Vecg by
Dp(V) := (V ®q, B)'x for every V' € Repg, (I'k).
2) We say that V € Repg (['x) is B-admissible if it satisfies
Qp
dimg Dp(V) = dimg, V.
(3) We write Repgp (T'k) for the category of B-admissible p-adic I'x-representations.

Remark. Let us briefly describe a cohomological interpretation of the notion of B-admissibility.
For any topological ring R with an action of I'y, there is a natural bijection between the
pointed set H'(T'x,GL4(R)) and the set of isomorphism classes of continuous semilinear
I"i-representation over R of rank d. Hence every V € Repg, (') corresponds to a class
[V] € HYT'k, GL4(Q,)), which in turn gives rise to a class [V]p € H (I'x, GLq(B)). It turns
out that V' € Repg, (I'r) is B-admissible if and only if [V]p is trivial.

71
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Example 1.1.4. We record some simple (but not necessarily easy) examples of admissible
representations.
(1) For every (Qp,I'k)-regular ring B we have Q, € Repgp (T'k) with D(Q,) = B'%.
(2) Every p-adic representation is Qp-admissible, as Dq, is the identity functor.
(3) Essentially by Hilbert’s Theorem 90, a p-adic representation V of I' is K-admissible

if and only if V is potentially trivial in the sense that the action of ' on V factors
through a finite quotient.

(4) By a hard result of Sen, a p-adic representation V of I'; is Cx-admissible if and only
if V' is potentially unramified in the sense that the action of Ix on V factors through
a finite quotient.

We now describe how Hodge-Tate representations fit into the formalism that we have
developed so far.

Definition 1.1.5. Let n : I'x — Q, be a character. For every Q,[I'k]-module M, we define
its twist by n to be the Q,[I'x]-module

M(n) :== M g, Qp(n)
where Q,(n) denotes the I'ix-representation on Q, given by 7.

Example 1.1.6. Given a Q,[I'x]-module M, we have an identification M (n) = M (x™) for
every n € Z by Lemma [3.1.11] in Chapter [[I}

Lemma 1.1.7. The group x(Ix) is infinite.

PROOF. By definition x encodes the action of ' on pe(K). In particular, we have
ker(x) = Gal(K (e (K))/K). Hence it suffices to show that K (p,e (K)) is infinitely ramified
over K.

Let e, be the ramification degree of K(ppyn(K)) over K, and let e be the ramification
degree of K over Q,. Then e, - e is greater than or equal to the ramification degree of
Qp(upn_l(f)) over Qp, which is equal to p"~!(p — 1). We thus find that e,, grows arbitrarily
large as n goes to 0o, thereby deducing the desired assertion. O

Theorem 1.1.8 (Tate [Tat67]). Let n : T'x — Z; be a continuous character. Then for
1 = 0,1 we have canonical isomorphisms

K ifn(Ik) is finite,

0 otherwise.

H' (T, Cre() = {

Remark. Theorem [1.1.8] recovers the essential part of the Tate-Sen theorem as stated in
Chapter [[I, Theorem [3.1.12} indeed, if we take n = x™ for some n € Z, then Theorem [[.1.8

yields canonical isomorphisms

H°(Tk,C(n)) = H' (T, Cg (n)) = 0 forn #0,

by Example and Lemma Moreover, for ¢ = 0 Theorem says that Qp(n) is

Cg-admissible if and only if it is potentially unramified, as we have already mentioned in

Example
Definition 1.1.9. We define the Hodge-Tate period ring by

BHT = @C[((n)

neZ

{K forn =0,
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Proposition 1.1.10. The Hodge-Tate period ring Byt is (Qp, I'i)-regular.

PROOF. Let us first check the condition|(i)]in Definition Let Cr denote the fraction

field of ByT. Since we have Bgﬁi = K by Theorem [3.1.12| in Chapter we need to show
C'x = K.

By Lemma in Chapter [T, we have a I'x-equivariant isomorphism
BHT ~ CK[t,t_l] (11)
where the action of I'x on Ck[t,t7!] is defined by

v (Z cnt"> = Z v(en)x(y)"t" for every v € I'. (1.2)

Let us similarly define the action of I'x on Ck(t) and Cg((¢)), which respectively denote
the field of rational functions and the field of formal Laurent series over Cx. Then the
isomorphism (|1.1]) induces a I" x-equivariant injective homomorphism

CHT ~ (CK(t) — CK((t))

Hence it suffices to show Cr((t))'* = K.

Consider an arbitrary formal Laurent series p(t) = ) ¢,t" over Cx. Then by we
have p(t) € Cx((t))'% if and only if ¢, = v(c,)x(7)" for every n € Z and every v € 'k, or
equivalently ¢, € Cx(n)'s for every n € Z by Lemma in Chapter [[I, We thus obtain
the desired assertion by Theorem in Chapter [[I]

It remains to check the conditionin Deﬁnition Let g(t) = > d,t™ be an arbitrary
nonzero element in Cx[t,t~1] such that Q, - g(t) is stable under the action of I'r. We wish to
show that q(t) is a unit in Cg/[t,¢~1]. Since ¢(t) # 0, we have d,,, # 0 for some m. It suffices
to show that d,, = 0 if n # m.

Let n : I'x — Q) be the character that encodes the action of ' on Q, - ¢(t). Then
n is continuous since the action of ' on each Cg(n) is continuous. In particular, we may
consider 7 as a character with values in Z). Now for every n € Z and every v € I'x we have
n(y)-dn = v(dn)x(7)", or equivalently d,, = (n~*x")(7)v(d,). This means d,, € Cg(n~1x")'%
for every n € Z, which implies by Theorem that (n~'x")(Ik) is finite for any n € Z with
dy # 0.

Suppose for contradiction that we have d,, # 0 for some n # m. Our discussion in the
preceding paragraph shows that both n~'x™ and n~'x™ have finite images on Ir. Hence
XV = (™) - (n71x™) ! also has a finite image, thereby yielding a desired contradiction
by Lemma [1.1.7 O

Proposition 1.1.11. A p-adic representation V of ' is Hodge-Tate if and only if it is
Bur-admissible.

PrROOF. By definition we have

Dy (V) = (V &g, Bur)'* = P(V ©qg, Cx(n))"¥. (1.3)

nez
Define @y as in Chapter [[I, Lemma Since @y is injective, it is an isomorphism if
and only if the source and the target have the same dimension over Cg, which amounts to
the identity dimg Dp,. (V) = dimg, V. The desired assertion now follows from definition of
Hodge-Tate representations and Byp-admissibility. O
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Example 1.1.12. Let V be a p-adic representation of ' which fits into an exact sequence
00— Q) — V. —— Qp(m) —— 0

where [ and m are distinct integers. We assert that V' is Hodge-Tate. For every n € Z we
obtain an exact sequence

0 —— Cx(l+n) —— V®q, Cx(n) —— Cx(m+n) —— 0
as Ck(n) is flat over @), and consequently get a long exact sequence
0 — Cx(l+n)'*x — (V ®q, Ck(n))'* — Cg(m+n)'x — H'(I'k,Ck (I +n)).
Then by Theorem in Chapter [T we find

K forn=-Il,—m,

V ®g, C Tr
(V @, Cx(n)) {0 for n # —1, —m.

Hence by ((1.3]) we have

dimg Dy (V) = dimg (V ®g, Cx (n))'* = 2 = dimg, V,
nez
thereby deducing the desired assertion.

Remark. On the other hand, a self extension of Q, may not be Hodge-Tate. For example, the

11
two-dimensional vector space over Q, where each v € I' acts as the matrix (0 ng(lx (7))

is not Hodge-Tate. The proof of this statement requires some knowledge about the Sen theory.

Proposition 1.1.13. Let n: I'x — Z) be a continuous character. Then Qp(n) is Hodge-
Tate if and only if there exists some n € Z such that (nx™)(Ix) is finite.

PROOF. Since Q,(n) is 1-dimensional, Lemma in Chapter [II| implies that Q,(n) is
Hodge-Tate if and only if there exists some n € Z with (Q,(n) ®g, Cx(n))'% # 0, which
amounts to the condition Cx(nx™)'% # 0 by Example We thus obtain the desired
assertion by Theorem [1.1.8 O

Definition 1.1.14. Let V be a Hodge-Tate representation. We say that an integer n € Z is
a Hodge-Tate weight of V with multiplicity m if we have

dimK(V ®Q, CK(H))FK =m > 0.
Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.
(1) For every n € Z the Tate twist Q,(n) of Q, is a Hodge-Tate representation with the

Hodge-Tate weight —n.

(2) For every p-divisible group G over O, the rational Tate module V,(G) is a Hodge-
Tate representation with the Hodge-Tate weights 0 and —1 by the proof of Corollary
in Chapter [T}

(3) For an abelian variety A over K with good reduction, the étale cohomology HZ (A%, Qp)
is a Hodge-Tate representation with the Hodge-Tate weights 0,1, --- ,n by the proof

of Corollary [3.4.16] in Chapter [[I]

Remark. The readers should be aware that many authors use the opposite sign convention
for Hodge-Tate weights. We will explain the reason for our choice in
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1.2. Formal properties of admissible representations
Throughout this subsection, we fix a (Q,, 'k )-regular ring B and write F := B,
Theorem 1.2.1. For every V € Repg, (T'x) we have the following statements:
(1) The natural map
ay : Dp(V)®g B — V ®q, B
is B-linear, T i -equivariant, and injective.
(2) We have an inequality
dimE DB(V) < dim@p \%4 (1.4)

with equality if and only if ay is an isomorphism.

PROOF. Let us first consider the statement |(1)} The natural map ay is given by
av : Dp(V)®g B — (V ®q, B) g B=V ®q, (B®g B) — V ®q, B,
which is B-linear and I'g-equivariant by inspection. We need to show that «ay is injective.
By Example the fraction field C of B is (Qp, 'k )-regular. We thus have a natural map
Bv:Dc(V)®@p C — V&g, C

which fits into a commutative diagram

Dp(V)®g B —> V ®q, B

/ I

De(V) &5 C -2 Vg, C

where both vertical maps are injective. Therefore it suffices to prove the injectivity of Gy .
Let (z;) be a basis of Dc(V) = (V ®g, C)"'% over E. We regard each x; as an element in
V ®q, C. Note that (x;) spans Do (V) ®g C over C.

Assume for contradiction that the kernel of 8y is not trivial. Then we have a nontrivial
relation of the form Y b;x; = 0 with b; € C. Let us choose such a relation with minimal
length. We may assume b, = 1 for some r. For every v € I'x we find

0=~ (Z bixi) - Zbﬂz‘ = Z(*y(bz) —b;)x;.

Since the coefficient of x, vanishes, the minimality of our relation yields b; = ~(b;) for each
b;, or equivalently b; € CT'x = E. Hence our relation gives a nontrivial relation for (x;) over
E, thereby yielding a desired contradiction.

We now proceed to the statement Since the extension of scalars from B to C preserves
injectivity, ayy induces an injective map

Dp(V)®g C — V ®q, C. (1.5)
The desired inequality (|1.4) now follows by observing
dime Dp(V) @p C = dimg Dg(V) and dimc V ®q, C = dimg, V. (1.6)

Hence it remains to consider the equality condition.
If ay is an isomorphism, the map (1.5) also becomes an isomorphism, thereby yielding
equality in (1.4 by (1.6). Let us now assume that equality in (1.4) holds, and write
d:=dimg Dp(V) = dimg, V.
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By we find that the map is an isomorphism for being an injective map between
two vector spaces of the same dimension. Let us choose a basis (¢;) of Dp(V) = (V ®q, B)'®
over E and a basis (v;) of V over Q. Then we can represent ay by a d x d matrix My . We
have det(My) # 0 as ay induces an isomorphism (L.5). We wish to show det(My) € B*.
Let us consider the identity

ay(er A+ Neg) = det(My)(vi A+ Avg).
By construction, I'k acts trivially on ey A --- A eq and by some Q,-valued character n on

v1 A -+ - Avg. Since ay is I'g-equivariant, we deduce that I'x acts on det(My ) by n~!. Hence
we obtain det(My ) € B* as B is (Qp, 'k )-regular, thereby completing the proof. O

Proposition 1.2.2. The functor Dg is exact and faithful on Repgp (Tg).

PROOF. Let V and W be B-admissible representations. Suppose that f € Homg, (V, W)
induces a zero map Dp(V) — Dp(W). Then f induces a zero map V ®q, B — W ®q, B
by Theorem [1.2.1] which means that f must be a zero map. We thus find that the functor
Dgp is faithful on Rep(gp (T'k).

It remains to verify that Dp is exact on Rep(gp (I'k). Let us consider an arbitrary short
exact sequence of B-admissible representations

0 U v w > 0.

Recall that every algebra over a field is faithfully flat; in particular, B is faithfully flat over
both Q, and E. Therefore we find that the sequence

0 — U®qe,B—>V®qy,B—Wgqg,B——0
is exact, which implies that the sequence
0—— DB(U) Kp B —— DB(V) Kp B —— DB(W) KB —— 0

is also exact by Theorem [1.2.1] The desired assertion now follows by the fact that B is
faithfully flat over E. O

Proposition 1.2.3. The category Repgp (T'k) is closed under taking subquotients.

Proor. Consider a short exact sequence of p-adic representations
0 » U >V > W 0 (1.7)

with V' € Rep(gp (T'x). We wish to show that both U and W are B-admissible. Since the
functor Dp is left exact by construction, we have a left exact sequence

0—— DB(U) e DB(V) e DB(W) (18)

In addition, by Theorem [1.2.1| we have inequalities
dimg Dp(U) < dimg, U and dimg Dp(W) < dimg, W. (1.9)
Then the exact sequences and together yield inequalities
dimg Dp(V) < dimg Dp(U) + dimg Dp(W) < dimg, U + dimg, W = dimg, V,

which are in fact equalities as V' is B-admissible. We thus have equalities in (1.9]), thereby
deducing the desired assertion. O

Remark. However, in general the category Repgp (T'k) is not closed under taking extensions,
as noted after Example [1.1.12
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Proposition 1.2.4. Given V,W € Repgp(FK), we have V ®qg, W € Repgp(FrK) with a
natural isomorphism
Dp(V) ®@g Dp(W) = Dg(V ®qg, W).
Proor. By Theorem we have natural isomorphisms
ay : Dp(V) ®EB;V®QPB and aw : Dp(W) ®EBL>W®QP B.
Let us consider the natural map

Dp(V)®g Dp(W) —— (V ®q, B) ®r (W ®q, B) —— (V ®q, W) ®q, B. (1.10)

The image of the first arrow is a I'k-invariant space (V' ®q, B)Y'x @ (W ®q, B)'x | while the
second arrow is evidently I'g-equivariant. Hence we obtain a natural E-linear map

Dp(V) ®p Dp(W) — ((V ©q, W) ®q, B)' = Dp(V ©q, W). (1.11)
Moreover, this map is injective since the map extends to a B-linear map
(Dp(V)®g Dp(W)) @ B — ((V ®q, B)®g (W ®q, B)) ®@p B — (V ®Q, W) ®q, B
which coincides with the isomorphism ay ® oy under the identifications
(Dp(V)®g Dp(W))®g B= (Dp(V)) ®p (Dp(W) ®g B),
((V®q, B) @k (W ®q, B)) @p B = (V ®qg, B®g B) ®5 (W ®q, B @k B),
(V®g, W)®q, B=(V®q, B)®@p (W ®q, B).
Therefore the map yields an inequality
dimg Dp(V ®q, W) > (dimg D(V)) - (dimg Dp(W)) = dimg, V ®q, W

where the equality follows from the B-admissibility of V' and W. We then find that this
inequality is indeed an equality by Theorem 1.2.1L thereby deducing that V' ®q, W is a B-
admissible representation with the natural isomorphism ((1.11]). O

Proposition 1.2.5. For every V € Repgp (Tk), we have N"(V) € Rep(gp (Tk) and Sym™V €
Rep(gp (I'x) with natural isomorphisms

N (Dp(V)) = Dp(A"(V)) and Sym"(Dp(V)) = Dp(Sym"(V)).

PROOF. Let us only consider exterior powers here, as the same argument works with sym-
metric powers. By Proposition we have VO ¢ Repgp (T'x) with a natural isomorphism
Dp(V®™) = Dgp(V)®". Hence by Proposition we have A"(V) € Rep(gp (Tk) with a
natural E-linear map

Dp(V)®" —=— Dp(V®") —— Dp(A"(V))

where the surjectivity of the second arrow follows from the exactness of Dp as noted in
Proposition It is then straightforward to check that this map factors through the
natural surjection Dg(V)®" — A"(Dp(V)). We thus obtain a natural surjective E-linear
map

AN'(Dp(V)) — Dp(A"(V)),
which turns out to be an isomorphism since we have
dimp A"(Dp(V)) = dimg Dp(A™(V))
by the B-admissibility of V' and A™(V). O
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Proposition 1.2.6. For every V € Repgp (Tk), the dual representation V'V lies in Repgp (Tk).
Moreover, the natural map

Dp(V)®p Dp(VY) = Dp(V ®q, V') — Dp(Q,) 2 E (1.12)
s a perfect pairing.

PROOF. Let us first consider the case where dimg, V' = 1. We fix a basis vector v for V'
over Qp, and denote by v¥ the corresponding basis vector for V'V over Q,. Then we have a
character n: I'x — Q) that satisfies

v(v) = n(y)v for every v € T'k. (1.13)
Since Dp(V) = (V ®q, B)''¥ is 1-dimensional over E by the B-admissibility of V, it admits
a I'g-invariant basis vector v ® b for some b € B. Hence by (1.13)) we find
v@b=7(®b) =7(v)®y(b) =n()v @) =v@n()y(0b)  forevery v €Ik,
or equivalently
b=n(y)y(b) for every v € I'k. (1.14)
Moreover, we have b € B> as Theorem yields a natural isomorphism
Dp(V)®e B=V ®q, B
which sends v ® b to a basis vector for V ®q, B over B. We then find by (1.14) that
Dp(VY) = (VY ®q, B)'¥ contains a nonzero vector vV ® b~'. Hence the inequality
dimg Dp(V") < dimg, V¥ =1

given by Theorem must be an equality, which implies that V'V is B-admissible. We also
find that v ® b1 is a basis vector for Dg(V") over E, and consequently verify that the map

(1.12) is a perfect pairing.
We now prove the B-admissibility of V'V in the general case. Let us write d := dimg, V.
We have a natural I'g-equivariant isomorphism
@ : det(VY) ®g, AV VY
such that
D ((fi A Afa) ®(v2 A-e- Avg)) (v1) = det(fi(v;))
for all f; € VY and v; € V. Proposition implies that both det(V) = A%V and A1V are

B-admissible. Then our discussion in the preceding paragraph shows that det(V") = det(V)V
is also B-admissible since dimg, det(V) = 1. Therefore we find that V' is B-admissible by

Proposition [1.2.4]
It remains to show that the map (1.12) is a perfect pairing in the general case. Since both

V and VV are B-admissible, we have

d = dimg Dg(V) = dimg Dg(V").
Upon choosing bases for Dg(V) and Dg(V") over E, we can represent the map (1.12)) as
a d x d matrix M. Then the map (1.12) is perfect if and only if det(M) is not zero, or
equivalently the induced pairing

det(Dp(V)) ®p det(Dp(VY)) — E

is perfect. We thus deduce the desired assertion from the first paragraph using the identifica-
tions

det(Dp(V)) = Dp(det(V)) and det(Dp(V"Y)) = Dp(det(V"))
given by Proposition [1.2.5 U
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2. de Rham representations

The main goal of this section is to define and study the de Rham period ring and de
Rham representations. We will use some basic theory of perfectoid fields to provide a modern
perspective of Fontaine’s original work. Our discussion will introduce many ideas that we
will further investigate in Chapter [V} The primary references for this section are Brinon and
Conrad’s notes [BC| §4 and §6] and Scholze’s paper [Sch12].

2.1. Perfectoid fields and tilting

Definition 2.1.1. Let C be a complete nonarchimedean field of residue characteristic p. We
say that C is a perfectoid field if it satisfies the following conditions:

(i) The valuation on C' is nondiscrete.

(ii) The p-th power map on O¢/pQO¢ is surjective.
Remark. When we say that a field is nonarchimedean, we always assume that the field is

not trivially valued. On the other hand, when we say that a field is valued, we assume that
the field may be trivially valued.

Lemma 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. Assume
that the p-th power map is surjective on C. Then C' is a perfectoid field.

PROOF. Let us write v for the valuation on C. We assert that v is nondiscrete. Suppose
for contradiction that v is discrete. Take an element x € C with a minimum positive valuation.
Since the p-th power map is surjective on C', we have x = y? for some y € C'. Then we find

0 <v(y) =v(z)/p <v(z),
thereby obtaining a desired contradiction.

It remains to verify that the p-th power map on O¢/pQO¢ is surjective. It suffices to show
that the p-th power map on O¢ is surjective. Take an arbitrary element z € Og. We may
write z = wP for some w € C as the p-th power map is surjective on C' by the assumption.
Then we find w € O¢ by observing

v(w) =v(z)/p > 0.
Hence we obtain the desired surjectivity of the p-th power map on O¢. O

Example 2.1.3. Since Cg is algebraically closed as noted in Chapter [, Proposition [3.1.5
it is a perfectoid field by Lemma [2.1.2

Proposition 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

PROOF. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by

Lemma 2.1.2 O

For the rest of this subsection, we let C' be a perfectoid field with the valuation v.
Definition 2.1.5. We define the tilt of C' by
C’:= lim C
—

x—xP

endowed with the natural multiplication.
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A priori, the tilt of C is just a multiplicative monoid. We aim to show that it has a
natural structure of a perfectoid field of characteristic p. For every ¢ = (¢,) € C° we write
f._
Cc" = ().

Lemma 2.1.6. Fiz an element w € C* with 0 < v(w) < v(p). Then for arbitrary elements
x,y € Oc with x —y € wO¢ we have

" —y”" e "M Oc for eachn=20,1,2,---.

PROOF. The inequality v(w) < v(p) implies that p is divisible by w in O¢. We also have

1 n—1

n 7 — n— p 7,
—yP = (yp + (aP =P 1)) — P foreachn=1,2,---.

n

2P
Since we have © — y € wO¢, the desired assertion follows by induction. O

Proposition 2.1.7. For every element w € C* with 0 < v(w) < v(p), the natural projection
Oc — Oc/wO¢ induces a multiplicative bijection
@ Oc = th Oc/wO¢.

x—xP T—xP
Proor. We wish to construct an inverse

I l&l Oc/w(’)o — l&l Oc.
x—xP x—xP
Take an arbitrary element ¢ = (¢,) € lim Oc /wwO¢. For each n, we choose a lift ¢, € O¢ of
x—xP
Cpn. By construction we have
!

cfH_mH — cpym € wO¢ for all I,m,n > 0,
and consequently find
m+1 m
CZJFZH_Z —ch € ™0 for all n,m >0
by Lemma Hence for each n > 0 the sequence (Cg:m)mzo converges in O¢ for being

Cauchy. In addition, the limit does not depend on the choice of the ¢,’s by Lemma Let
us now write

0,(@) := lim

n-r+m
m—00 +

We then obtain the desired inverse by setting
(@) == (£,(0)) € lim Oc,

x—xP

for each n > 0.

thereby completing the proof. O

Proposition 2.1.8. The tilt C* of C' is naturally a complete valued field of characteristic p
with, the valuation v* given by 1°(c) = v(ct) for every ¢ € C”. Moreover, the valuation ring of
C" is given by

ch = l&l OC.

x—xP

PRrROOF. Fix an element w € C* with 0 < v(w) < v(p). The ring Oc/wO¢ is of
characteristic p since w divides p in O¢ by construction. Hence the ring structure on O¢/@wO¢
induces a natural ring structure on lim Oc¢ /@wO¢, which in turn yields a ring structure on

x—xP
O .= lln Oc = lln Oc/wO¢ (2.1)

r—xP r—xP
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where the isomorphism is given by Proposition Moreover, this ring structure on O does
not depend on the choice of w; indeed, by the proof of Proposition we find that the sum
of two arbitrary elements a = (a,,) and b = (b,) in O is given by

m

(a+b)p = lim (amin + bmsn)?

We then identify C” as the fraction field of O. It is clear by construction that C” is perfect of
characteristic p.

We assert that C* admits a valuation 1” given by 1°(c) := v(ct) for every ¢ € C”. It
is evident by construction that v’ is a multiplicative homomorphism. Let us now consider
arbitrary elements a = (a,) and b = (b,) in C”. We wish to establish an inequality

V(a + b) > min(v’(a), (b))
We may assume 1°(a) > 1°(b), or equivalently v(ag) > v(bg). Then for each n > 0 we have
1 1
v(an) = Zavla0) 2 2v(bo) = v(ba),
which means a,, /b, € O¢. Therefore we may write a = br for some r € O and find
V(a+0b)=1"((r+1)b) = " (r + 1) + °(b) > 1" (b) = min(v’(a), v’ (b))
where the inequality follows by observing r + 1 € O.

Let us now take an arbitrary element ¢ = (¢,,) € C®. We have an inequality

1 1
v(icy) = ﬁy(co) = ﬁyb(c) for each n > 0. (2.2)

Hence we deduce that @ is indeed the valuation ring of C°. Moreover, given any N > 0
the inequality implies that we have v(c,) > v(w) for all n < N if and only if °(c) >
pNv(w). Therefore the bijection becomes a homeomorphism if we endow O, = O and
@ Oc/wOc¢ respectively with the VP-adic topology and the inverse limit topology. As the

x—xP

latter topology is complete, it follows that C” is complete. O

Remark. Our proof of Proposition [2.1.8| remains valid if C' is replaced by an arbitrary com-
plete nonarchimedean field L (with its “tilt” L’ defined as in Definition . However, if L
is not perfectoid the valuation on the tilt L’ becomes trivial. For example, the “tilt” of Qp is
easily seen to be isomorphic to F,, (with the trivial valuation).

Proposition 2.1.9. The map Oy — Oc/pOc which sends each ¢ € Oy to the image of
in Oc/pOc¢ is a ring homomorphism.

Proor. This is evident by the definition of the natural ring structure on O given in
the proof of Proposition [2.1.8] O

Lemma 2.1.10. For every y € O¢ there exists an element z € Op» with y — 24 € pOg¢.

PROOF. Let 7 denote the image of y in O¢/pO¢. Since the p-th power map on O¢/pOc

is surjective, there exists an element 2’ = (z;) € lim O¢/pOc with 2, = Z. The assertion
TP

now follows by taking z € O to be the image of 2’ under the bijection

ch ~ lin Oc/pOC

r—xP

as given by Proposition and Proposition O
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Proposition 2.1.11. The valued fields C and C” have the same value groups.

PROOF. Let ©” be the valuation on C” given by 1°(c) = v(ct) for every ¢ € C°. Since
we have ((Cb)x) C v(C*) by construction, we only need to show v(C*) C 1 ((Cb)x).

Let us consider an arbitrary element y € C*. We wish to find an element z € (C”)* with

’(2) = v(y). Since v is nondiscrete, we can choose an element @ € O¢ with 0 < v(w) < v(p).
Let us write y = @w"™u for some n € Z and u € O¢ with v(u) < v(w). By Lemma [2.1.10| there

d € pO¢ and u — (u")ﬁ € pO¢. Then we find
)=v (@) - (@ - (@))) =v(=),
V() = v((@)) = v () - (w— @) = v(u).

Hence we obtain the desired assertion by taking z = (@”)™u’. O

exist elements w’ and «” in O with @ — (”)

V(@) = v((=)

Corollary 2.1.12. The field C” is a perfectoid field of characteristic p.

PROOF. Proposition [2.1.11] implies that the value group of C” is not trivial. Since C” is
perfect by construction, the assertion follows by Proposition and Proposition [2.1.8] 0O

Corollary 2.1.13. If C is of characteristic p, there exists a natural identification C° = C.

PROOF. As C' is perfect by Proposition [2.1.4] the assertion is evident by construction. [

—

Example 2.1.14. Let Q,(p'/?™) denote the p-adic completions of U Qp(pl/pn). The p-adic
n>1
valuation on Q,(p/P*) is clearly not discrete. In addition, the valuation ring of Q,(p'/7*) is
easily seen to be Z,[p!/P™], the p-adic completion of the Z,-algebra obtained by adjoining all
p-power roots of p. We also have an isomorphism
Zp[p'/7™]/p = Zy[p' 7] /p = Fp w77 Ju
where ]Fp[ul/ P*] denotes the perfection of the polynomial ring Fp[u]. Since the p-th power

map on Fp[u!/P™]/u is evidently surjective, we deduce that Q,(p'/P™) is a perfectoid field.
Moreover, we obtain an identification

im Z,[pl/P]/p ~ 1i P fyy ~ B [0/
Tim Z,[pP]/p = lim B, u!/7)fu = Fyful /]
where F,[ul/7>] denotes the u-adic completion of F,[u!/?™], and consequently find that the

o —

tilt of Q,(p'/P™) is isomorphic to F,((u!/P>)), the u-adic completion of the perfection of the
Laurent series ring F,((u)).

Remark. A similar argument shows that the p-adic completion of Q, () is also a perfectoid
field whose tilt is isomorphic to F,((u!'/?™)). Therefore the tilting functor is not fully faithful
on the category of perfectoid fields over Q,. This fact is a foundation for Scholze’s theory of
diamonds as developed in [Sch18| and [SW20].

On the other hand, for every perfectoid field C the tilting functor induces an equivalence
between the category of perfectoid fields over C' and the category of perfectoid fields over C”.
This is a special case of the tilting equivalence, which is the main result of Scholze’s paper

[Schi2].
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2.2. The de Rham period ring Bggr

For the rest of this chapter, we write F := (C*% for the tilt of Cx. In addition, for every
element ¢ = (¢,)n>0 in F' we write ¢t := ¢y. We also fix a valuation v on Cx with v(p) =1,
and let ©° denote the valuation on F given by 1°(c) = v(ct) for every ¢ € F.

Definition 2.2.1. We define the infinitesimal period ring, denoted by Ajn¢, to be the ring of
Witt vectors over Op. For every ¢ € O, we write [c] for its Teichmiiller lift in Aj¢.

Remark. The ring Ajyf is not (Qp, I'x)-regular in any meaningful way.

Proposition 2.2.2. There exists a surjective ring homomorphism 6 : Ay — Oc,. with

0 <Z[cn]pn> = chlp” for all ¢, € Op. (2.3)
n=0

n=0
PROOF. Let us define a map 0 : Op — Oc,, /pOc,. by
B(c) = ¢t for every ¢ € Op

where ¢f denotes the image of ¢! in Oc,, /pOc,.. Then @ is a ring homomorphism as noted in
Proposition m Moreover, by construction @ lifts to a map 6 : Op — Og,. defined by

0(c) = ¢ for every ¢ € Op.

Since 6 is clearly multiplicative, Lemma from Chapter [II] yields a ring homomorphism
0 : Ains — Oc,, satisfying .
It remains to establish the surjectivity of 6. Let x be an arbitrary element in Oc,.. Since
Oc,, is p-adically complete, it is enough to find elements co, c1,--- € O with
m
x—Zcﬁpn € p" M Oc, for each m =0,1,--- .

n=0

In fact, by Lemma we can inductively define each ¢,, to be any element in O with
1 m—1
p—m (a: - Z cip”) — c?n € pOcy,
n=0
thereby completing the proof. O

Remark. As explained in [BC| Lemma 4.4.1], it is possible to construct the homomorphism
6 in Proposition [2.2.2] without using Lemma [2.3.1] from Chapter [[Il In this approach, we first
define 6 as a set theoretic map given by , then show that 6 is indeed a ring homomorphism
using the explicit addition and multiplication rules for Aj.s.

For the rest of this chapter, we let 6 : A;,y — Oc,, be the ring homomorphism constructed
in Proposition and let 0[1/p] : Aint[1/p] — Cx be the induced map on Ajn¢[1/p]. We

also choose an element p’ € Op with (pb)tj = p, and set & := [p’] — p € Ay
Definition 2.2.3. We define the de Rham local ring by

B = 1im Au[1/p]/ ker(8[1/p])".
J

We denote by 0 the natural projection By — Aine[1/p]/ ker(6[1/p]).
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Remark. We will soon define the de Rham period ring Bgr as the fraction field of B:{R
after verifying that B(;FR is a discrete valuation ring. At this point, it is instructive to explain
Fontaine’s insight behind the construction of Bgg. As briefly discussed in Chapter [[ the main
motivation for constructing the de Rham period ring Bgr is to obtain the de Rham comparison
isomorphism as stated in Chapter [, Theorem [.2.2] Recall that the de Rham cohomology
admits a canonical filtration, called the Hodge filtration, whose associated graded vector space
recovers the Hodge cohomology. Since the Hodge-Tate decomposition can be stated in terms
of the Hodge-Tate period ring Byt as noted after Theorem [I.2.1]in Chapter [ Fontaine sought
to construct Bgr as a ring with a canonical filtration which recovers Byt as the associated
graded algebra. His idea was to construct the subring BJR as a complete discrete valuation
ring with an action of I'x such that there exist I' x-equivariant isomorphisms

B$R/de ~ CK and de/miR ~ (CK(l)

where mygr denotes the maximal ideal of BJR. In characteristic p, the theory of Witt vectors
provides a natural way to construct a complete discrete valuation ring with a specified perfect
residue field. Fontaine judiciously applied the Witt vector construction to the field Cx of
characteristic 0 by passing to characteristic p. More precisely, he first defined the ring A;.s as
the ring of Witt vectors over the perfect ring
Ry = m O(CK/pO(CK7

TP
which he called the perfection of Oc, /pOc, , then constructed the homomorphism 60[1/p] as
above to realize Ck as a quotient of A;u¢[1/p]; indeed, since Ry is naturally isomorphic to Op
by Proposition [2.1.7, our construction provides a modern interpretation for the construction
of Rk and A;,¢. Fontaine then define B:R as the completion of Aj¢[1/p] with respect to
ker(0[1/p]) as in Definition and showed that Bj, satisfies all the desired properties.

We now aim to show that BGJ{R is a complete discrete valuation ring with Cg as the residue
field. To this end we study several properties of ker(6).

Lemma 2.2.4. For each n > 0 we have ker(0) N p™Ajns = p™ ker(0).

PROOF. We only need to show ker(6) N p"Aiys C p™ ker(6) since the reverse containment
is obvious. Let a be an arbitrary element in ker(6) N p™Aj,e. We may write a = p™b for some
b € A;pe. Then we have

0=06(a) = 0(p"b) = p"0(b),
and consequently find 6(b) = 0 since O¢, has no nonzero p-torsion. We thus deduce that
a = p"b lies in p" ker(0). O
Lemma 2.2.5. Every element a € ker(6) is of the form a = c€ + dp for some ¢,d € Ajns.

Proor. We wish to show that a lies in the ideal generated by £ and p, or equivalently by
[p°] and p. Let us write

a=">Y [e]p" = [co] + Z[cn]p” for some ¢, € Op.
n>0 n>1

It suffices to show that [co] is divisible by [p’]. Since we have 0 = 6(a) = Z & p", we deduce
n>0
that cg is divisible by p, and consequently find
#
v (eo) = v(ch) = v(p) = v((P")) = V().

Hence there exists some r € Op with ¢y = p’r, which yields [co] = [p°][r] as desired. O



2. DE RHAM REPRESENTATIONS 85

Proposition 2.2.6. The ideal ker(0) in Ay is generated by &.
PrROOF. By definition we have
#
06 =0([p"l —p)= (") —p=p—p=0.

Hence we only need to show that ker(#) lies in the ideal £ Ajy. Let a be an arbitrary element
in ker(6). Since Aj,s is p-adically separated and complete by construction, it suffices to show

that there exist elements cg, ¢, -+ , € Ajns with
m
a— Z enlp™ € p"H Ay for each m > 0.
n=0

We proceed by induction on m to find such cg,c1,- -+ € Ajpe. As both € and a lie in ker(6),

we have
m—1

a— Z en&p™ € ker(0) Np™ Aing = p"" ker(6)
n=0
by the induction hypothesis and Lemma Then by Lemma we find some c¢,,, d,, €
A;p with

m—1

a — Z Cngpn = pm(cm€ + pdm)7
n=0

or equivalently
m
a — Z Cngpn = pm+ldm
n=0
as desired. O

Remark. Propositionyields an isomorphism of valuation rings Aing/&Ains >~ Oc, . Since
the construction of Aj,¢ depends only on the field F', we find that the ideal £ A;,¢ contains all
necessary information for recovering the perfectoid field Cg from its tilt F. In fact, as we
will see in Chapter every “untilt” of F' can be realized as the fraction field of A;n¢/I for a
unique principal ideal I in Ajys.

Corollary 2.2.7. The ideal ker(0[1/p]) in Ant[1/p] is generated by &.

PRrROOF. For every a € ker(0[1/p]), we have p"a € ker(d) for some n > 0. Hence the
assertion follows from Proposition [2.2.6 O

Remark. In fact, our proof shows that every generator of ker(f) generates ker(0[1/p]).

Lemma 2.2.8. Every a € Aiye[1/p] with a € Ajne is an element in Ajys.

PROOF. Since we have 6(¢a) = 0[1/p](£a) = 0, there exists an element b € Ajyr with
£a = &b by Proposition We then find ¢ = b as Ajy¢ is an integral domain, thereby
deducing the desired assertion. O

Lemma 2.2.9. For all j > 1 we have Aps Nker(0[1/p])? = ker(6)7.

PROOF. We only need to show Aj,s Nker(8[1/p])? C ker()? since the reverse containment
is obvious. Let a be an arbitrary element in A;,¢ N ker(#[1/p])?. Corollary implies that
there exists some r € Ap[1/p] with a = &b, Then we find b € Ay by Lemma and
consequently obtain a € ker(#)’ by Proposition m O
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Proposition 2.2.10. We have ﬂ ker(9)’ = m ker(c9[1/p])j = 0.
j=1 j=1

PrROOF. By Lemma we find

ﬂker [1/p])’ ﬂker 6)7 | [1/p). (2.4)
7=1

o0 oo
Hence it suffices to prove ﬂ ker(f)? = 0. Take an arbitrary element ¢ € ﬂ ker(f)’. As usual,
j=1 j=1
let us write ¢ = ) [, ]p™ for some ¢, € Op. By Proposition we find that ¢ is divisible
by arbitrarily high powers of ¢ = [p°] — p. This implies that cg is divisible by arbitrarily high
powers of p”, which in turn means ¢y = 0 as we have

#
V(') = v((P')) = v(p) =1>0.
Hence we find some ¢ € Ajy¢ with ¢ = pc’. Moreover, Lemma, and (2.4)) together yield

o

d € AN ﬂ ker(0)’ | [1/p] = Ajne N ﬂ ker(8[1/p])’ ﬂ ker (6
7j=1 j=1

Then an easy induction shows that c is infinitely divisible by p, which in turn implies ¢ = 0

as Ajyr is p-adically complete. O

Corollary 2.2.11. The natural map
Aint[1/p] — lim Aine[1/p]/ ke (0[1/p])’ = By
J
is injective. In particular, we may canonically identify Aine[1/p] as a subring of BS'R

Proposition 2.2.12. The ring B;'R 18 a complete discrete valuation ring with ker(ﬂjl'R) as the
mazimal ideal and Cg as the residue field. Moreover, the element £ is a uniformizer of B&"R.

PROOF. Since both GIR and 6[1/p] are surjective by construction, we have an isomorphism

Bin/ ker(035) =~ Aie[1/p]/ ker(0[1/p]) ~ Cx
In addition, a general fact as stated in [Sta Tag 05GI] implies that every element b € B:{R
is a unit if and only if ; (b) is a unit in Bj;/ker(dz) ~ Ck, or equivalently b ¢ ker(61:).
Therefore BJy is a local ring with ker(6J;) as the maximal ideal and Cx as the residue field.
Consider an arbitrary nonzero element b € le'R. For each j > 0, let b; and §; respectively

denote the image of b and ¢ under the projection Bjy — Ain[1/p]/ker(6[1/p])7. Take the
maximum ¢ > 0 with b; = 0. Then for each j > ¢ we have

b; € ker(0 [1/p])l/ ker ()’ and b; ¢ ker(0[1/p])" ™/ ker(6).
Hence by Proposition we may write b; = { u; for some uj € By /ker(6[1/p])’ with u; ¢

ker(6[1/p])/ ker(G[l/p]) For each j > i we let u/; denote the image of u; in B/ ker(6[1/p])7 "

By construction the sequence (u;) j>i gives rise to a unit u € BS{R such that b = £'u. Moreover,
it is not hard to see that u is uniquely determined by b even though the u;’s are not uniquely
determined. We thus deduce that B:{R is a discrete valuation ring with £ as a uniformizer.

The completeness of B:{R then follows by Proposition and Proposition [2.2.10 U
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Definition 2.2.13. We define the de Rham period ring Bggr as the fraction field of B(}LR.

Remark. Our argument so far in this subsection remains valid if Cg is replaced by any
algebraically closed perfectoid field of characteristic 0. Hence we may regard Bgygr as a functor
from the category of algebraically closed perfectoid fields over Q, to the category of complete
valued fields. In Chapter [[V] we will provide a geometric interpretation of this statement.

Proposition 2.2.14. For every uniformizer w of B:{R, the filtration {W”B(]LR neZ of Bar
satisfies the following properties:

(i) ™ Bz C "B for alln € Z.
(ii) () 7" Big =0 and | J 7" By = Bar.
nez neEL
(iti) (7™ BiR) - (7"Bjg) C 7™ "Bi; for allm,n € Z.
ProoOF. This is immediate by Proposition [2.2.12 O

Remark. The filtration { ﬂiBS_R nel does not depend on the choice of 7; indeed, we have
an identification 7B = ker(61;)™ for each n € Z.

Proposition 2.2.15. Let W (k) denote the ring of Witt vectors over k, and let Ky denote the
fraction field of W (k).

(1) The field K is a finite totally ramified extension of K.
(2) There ezists a natural commutative diagram

Ko ——— Aine[1/p]

| /

K —— B

\ lf’CTR

Ck

where the diagonal map is the natural inclusion.

(2.5)

PROOF. Let m denote the maximal ideal of Ok. The natural projection O /pOg —
Ok /m = k admits a canonical section s : k — Ok /pOf; indeed, the ring Ok /pOk is a
vector space over k with basis given by 1,7,--- , 71, where 7 is a uniformizer in Og with
v(m) = 1/e. In addition, the map s induces a homomorphism of discretely valued fields
Ky — K by Lemma from Chapter [lII We thus obtain the statement by observing
that both Ky and K are complete with the residue field k.

Let us now prove the statement Since k is perfect, the section s : k — Ok /pOk
induces a natural map
k — lim Oc, /pOc, = OF
r—xP
where the isomorphism is given by Proposition [2.1.7 We then obtain the top horizontal
arrow in (2.5) by Lemma [2.3.1] from Chapter and the upper right vertical arrow in (2.5
by Corollary 2.2.11} Hence B(‘fR is a complete discrete valuation ring over Ky. Moreover, the

statement |[(1)|implies that K is a separable algebraic extension of K, thereby yielding the left
vertical map in (2.5). Now we deduce by Hensel’s lemma that the subfield K of the residue
field Cg uniquely lifts to a subfield of BS{R over Ky, thereby obtaining the middle horizontal

arrow in ([2.5)). O
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Our final goal of this subsection is to describe and study the natural action of ' on Bgg,
especially in relation to the natural filtration on Bgr as described in Proposition We
invoke the following technical result without proof.

Proposition 2.2.16. There exists a refinement of the discrete valuation topology on B:R that
satisfies the following properties:

(i) The natural map Ajng — B;R identifies Ains as a closed subring of B;R.
(i) The map 6[1/p] is continuous and open with respect to the p-adic topology on Cg.
(iti) There exists a continuous map log : Zy(1) — Bl with

o0

log(e) = Z(—l)”‘*‘l([g];l)n for every e € Z,(1)
n=1

under the natural identification Zy(1) = lim pipv (K)={e€Op:e*=1}.
(iv) The multiplication by any uniformizer yields a closed embedding on BCTR.
(v) The ring Bl is complete.

Remark. We will eventually prove Proposition in Chapter [[V] after constructing the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition The
readers can also find a sketch of the proof in [BC| Exercise 4.5.3] and the discussion after
Definition 4.4.7 in loc. cit.

Here we provide an indication on why Proposition [2.2.16[is necessary for our discussion.
As we will soon describe, the natural I'g-action on Bgg is induced by the action of I'xr on
Ck such that the map GCJ{R is I'k-equivariant. Proposition ensures that the map GCJ{R
is furthermore continuous with respect to the p-adic topology on Cg, thereby allowing us to
exploit the topological properties of the I'g-action on Cg.

For the rest of this chapter, we consider the map log : Zy(1) — B('fR as given by Propo-
sition [2.2.16] In addition, we fix a Z,-basis element € € Z,(1) and write ¢ := log(e). We often
regard € as an element in Op via the identification Z,(1) = { ¢ € Op : ¢* =1} as noted in
Proposition [2.2.16 We also regard Aiy¢[1/p] as a subring of Bjy in light of Corollary [2.2.11
Lemma 2.2.17. We have v"(s — 1) = Ll
p —

PROOF. By construction we may write € = (({,») where each (y» is a primitive p"-th root
of unity in K. Then we find

Ve—1)=v ((5 - 1)ﬂ> =v ( lim ((pn — 1)pn)

n—oo
T

= lim p"v({n — 1) = lim

A, M =)
_ b
=>°1
by the proof of Proposition [2.1.8 and the continuity of the valuation v. g

Lemma 2.2.18. The element & divides [e] — 1 in Aj.

PRrROOF. By construction we have
0(Jc] —1) =ef—1=1-1=0.

Hence the assertion immediately follows from Proposition [2.2.6 U
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Proposition 2.2.19. The element t € B(TR s a uniformizer.

ProoOF. By Lemma [2.2.18 we have

[e] =1 € EAins and t= Z(—l)”ﬂ([s];l)n € (Bl
n=1

1"
We also find M € szIR for each n > 2. Since £ is a uniformizer of Bg‘R as noted in
Il

Proposition it suffices to prove [e] — 1 ¢ £2BJ;.

Suppose for contradiction that [e] — 1 lies in 5233}{. Then the proof of Proposition
shows that the image of [e] — 1 under the projection Bjg — Ain[1/p]/ ker(6[1/p])? is zero.
Since [¢] — 1 is an element of Aj, we find [e] — 1 € ker(A[1/p])? N Ajy¢. Hence Proposition
and Lemma together imply that [¢] — 1 is divisible by &2 in Ay

Since the first coefficients in the Teichmiiller expansions for [¢] — 1 and £2 are respectively
equal to [¢ — 1] and [(p*)?], we obtain

#
V(e—=1) 20 ((0")) =2 (0) = 2((p)") = 2v(p) = 2.
On the other hand, if p is odd we have 1°(¢ — 1) < 2 by Lemma [2.2.17, Therefore we find
p = 2. Let us now take an element ¢ € Ay with [¢] — 1 = £%c. We then compare the

coefficients of p in the Teichmiiller expansions of both sides and find & — 1 = ¢; (p")* where ¢
denote the coefficient of p in the Teichmiiller expansion of c¢. Hence we have

#
V(e =1) 2" = () = w((r)) = w(p) = 4,
thereby obtaining a desired contradiction since Lemma [2.2.17 yields v°(e — 1) = 2. O

w1 (el = 1)"

[e.e]
Remark. Our proof shows that the power series Z(—l)
n

n=1
to the discrete valuation topology on BCTR. Hence we can define the uniformizer ¢ € B:{R
without using the topology given in Proposition [2.2.16

converges with respect

Lemma 2.2.20. For every m € Z, we have log(¢™) = mlog(e).

PROOF. Let us first consider the case where m is an integer. We know that the identity
log((1 4+ 2)™) = mlog(l + )
holds as formal power series. Since ¢ = log(e) converges in BS{R as noted Proposition [2.2.19
we set £ = € — 1 to obtain the desired assertion.
We now consider the general case. Let us choose a sequence (m;) of integers such that
m; —m is divisible by p'. Aslog(e) =t is a uniformizer of B;R by Proposition [2.2.19} we find

lim m; log(e) = mlog(e)
1—00

by Proposition [2.2.16] In addition, it is straightforward to verify

lim ™ =™
1—00

with respect to the valuation topology on F. We thus find
log(e™) = log (llim 5””) = lim log(e™?) = lim m;log(e) = mlog(e)
1—00 1—00 1—00

where the second identity follows from the continuity of the logarithm map as noted in Propo-
sition [2.2.16) O
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Theorem 2.2.21 (Fontaine [Fon82]). The natural action of ' on Bygr satisfies the following
properties:
(i) The logarithm map and GIR are Tk -equivariant.
(ii) For every v € ' we have vy(t) = x(7)t.
(iti) Each t"Bjy is stable under the action of T'f.
(iv) There exists a canonical Tk -equivariant isomorphism

@tntR/thrlBg_R = @(CK(TL) = BHT-
neL neL

(v) Bar is (Qp, 'k )-regular with a natural identification Bgf{ ~ K.

PROOF. Let us first describe the natural action of 'y on Bgqr. The action of ' on Cg
naturally induces an action on F' = lin Cg as the p-th power map on Cg is I'x-equivariant.

x—xP
More precisely, given an arbitrary element z = (z,,) € F' we have y(z) = (vy(xy)) for every

v € I'. It is then evident that Op is stable under the action of I'r. Hence by functoriality
of Witt vectors we obtain a natural action of I'x on Ajn¢[1/p] with

y (Z[cn]p”) = Zh(cn)]p" forall v € ', ¢, € Op.

We then find that 6 and 6[1/p] are both I'x-equivariant by construction, and consequently
deduce that both ker(f) and ker(6[1/p]) are stable under the action of I'. Therefore '
naturally acts on B, = liinj Aine[1/p]/ ker(0[1/p])? and its fraction field Bqg.

With our discussion in the preceding paragraph, it is straightforward to verify the property
Moreover, for every v € ' we use Lemma [2.2.20| to find

7(t) = y(log(e)) = log(v()) = log(eX)) = x(v)log(e) = x(7)t,
thereby deducing the property |(ii)l The property then immediately follows as B(;FR is
stable under the action of I'k.
Let us now prove the property We note that the natural isomorphism

B(;“R/ ker(@ﬁR) = BchrR/thJer ~ Aine[1/p]/ ker(0]1/p]) ~ Ck.
is I'k-equivariant, and consequently obtain I'g-equivariant isomorphisms
ker(013)"/ ker(033)" ! = "Bl /"' Bjy ~ Ck(n)  forallneZ

by the property and Lemma|3.1.11)in Chapter [IlIL These isomorphisms are canonical since
t is uniquely determined up to Z;—multiple by Lemma [2.2.20L We thus obtain the desired
I’ x-equivariant isomorphism by taking the direct sum of the above isomorphisms.

It remains to verify the property The field Bgr is (Qp,'x)-regular as noted in
Example In addition, since the map GIR is I'-equivariant by construction, the natural
injective homomorphism K «— B:{R given by Proposition [2.2.15| is also I'ix-equivariant,
thereby inducing an injective homomorphism

K=K *— (Bh)'* — BLE. (2.6)
Then by the properties and we get an injective K-algebra homomorphism
r r 1 r
BBy nt"Biy)/(Byk Nt By) — By
nez
Since we have Bll;ff = K by Theorem [3.1.12|in Chapter |[I} the K-algebra on the source has
dimension at most 1. Hence we find dimg B < 1, thereby completing the proof by (2.6) O
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2.3. Filtered vector spaces

In this subsection we set up a categorical framework for our discussion of Bgr-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

(1) A filtered vector space over L is a vector space V over L along with a collection of

subspaces { Fil"(V') },, <5 that satisfies the following properties:
(i) Fil"(V) D Fil"Y(V) for every n € Z.
(i) () Fi"(V)=0and | JFil*(V)=V.
nez nez

(2) A graded vector space over L is a vector space V over L along with a direct sum

decomposition V = @ V.
nez

(3) A L-linear map between two filtered vector spaces V and W over L is called a

morphism of filtered vector spaces if it maps each Fil"(V') into Fil"(W).

(4) A L-linear map between two graded vector spaces V = @ Viand W = @ W,, over

nez nez
L is called a morphism of graded vector spaces if it maps each V,, into W,.

(5) For a filtered vector space V over L, we define its associated graded vector space by
gr(V) == @ Fi(v)/Fil (V)
neZ
and write gr”(V) := Fil"(V)/Fil"* (V) for every n € Z.
(6) We denote by Fily the category of finite dimensional filtered vector spaces over L.

Example 2.3.2. We present some motivating examples for our discussion.

(1) The ring Bgg is a filtered K-algebra with Fil"(Bggr) := t"Bjy and gr(Bar) = Bur
by Proposition [2.2.14] and Theorem [2.2.21]

(2) For a proper smooth variety X over K, the de Rham cohomology Hp (X/K) with
the Hodge filtration is a filtered vector space over K whose associated graded vector
space recovers the Hodge cohomology.

(3) For every V' € Repg, (I'x), we may regard Dy, (V) = (V ®q, Bar)'E as a filtered
vector space over K with

Fil'(Dpy, (V) = (V ®q, t"Big)"~.

Remark. For an arbitrary proper smooth variety X over K, we have a canonical I'g-
equivariant isomorphism of filtered vector spaces

DBdR(ch(X?v @p)) = H(?R(X/K)

by Theorem in Chapter In particular, we can recover the Hodge filtration on Hfj (X/K)
from the I'-action on H} (X7, Qp).

Lemma 2.3.3. Let V' be a finite dimensional filtered vector space over a field L. There exists
a basis (vi ;) for V such that for every n € Z the vectors v;; with i > n form a basis for
Fil"* (V).

PROOF. Since V is finite dimensional, we have Fil" (V') = 0 for all sufficiently large n and
Fil"(V)) = 0 for all sufficiently small n. Hence we can construct such a basis by inductively
extending a basis for Fil"(V) to a basis for Fil"~}(V). O
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Definition 2.3.4. Let L be an arbitrary field.

(1) Given two filtered vector spaces V and W over L, we define the convolution filtration
onV ®r W by

Fil"(V @, W)= Y Fil'(V) @, Fil/ (W).
i+j=n
(2) For every filtered vector space V over L, we define the dual filtration on the dual
space V¥ = Homp (V, L) by
Fil"(VY):={ f e V¥V Fil' "™(V) C ker(f) }.
(3) We define the unit object L[0] in Fil;, to be the vector space L with the filtration

{L if n <0,

e P

Remark. The use of Fil'!7"(V) rather than Fil~™ (V) in is to ensure that L[0] is self-dual.

Proposition 2.3.5. Let V be a filtered vector space over a field L. Then we have canonical
isomorphisms of filtered vector spaces

VeLL02L0e, V2V and (VY 2V

PrOOF. For every n € Z we find
Fil"(V @ L[0]) = Y Fil'(V) @ FiV (L[0]) = ) Fil'(V) = Fil*(V),
i+j=n >n
and consequently obtain an identification of filtered vector spaces
Ver L0 2 L0,V =V.

Moreover, the natural evaluation isomorphism € : V' 2 (V) yields an isomorphism of filtered
vector spaces since for every n € Z we have

Fil" (VY)Y) 2 {v eV :Fil'" (V") C ker(e(v)) }
={veV:fv)=0foral feFil'"™VY)}
={veV:f(v)=0forall fe V" with Fil"(V) C ker(f) }
= Fil" (V).
Therefore we complete the proof. O

Proposition 2.3.6. Let V and W be finite dimensional filtered vector spaces over a field L.
Then we have a natural identification of filtered vector spaces

(VeorW)2vYe,WY.

PROOF. By Lemma we can choose bases (v; ) and (w;;) for V and W such that
for every n € Z the vectors (v; ;)i>n and (wj;)j>n respectively form bases for Fil" (V) and
Fil"(W). Let (f; %) and (gj;) be the dual bases for V¥ and WV. Then the vectors (f; x ® g;;)
form a basis for the vector space (V @ W)Y = VV @ WV. Moreover, for every n € Z the
vectors (fix)i<—n and (g;1)j<—n respectively form bases for Fil"(V") and Fil"(W"). Hence
we find that for every n € Z both Fil" ((V @, W)V) and Fil"(VY @, W) are spanned by the
vectors (fir ® gj.1)i+j<—n, thereby deducing the desired assertion. O
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Lemma 2.3.7. Let V = @ Vo and W = @ Wy, be graded vector spaces over a field L. A

ne”L nez
morphism f 'V — W of graded vector spaces is an isomorphism if and only if it is bijective.

PROOF. The assertion immediately follows by observing that f is the direct sum of the
induced morphisms f,, : V,, — W,,. Il

Proposition 2.3.8. Let L be an arbitrary field. A bijective morphism f :V — W in Filp,
is an isomorphism in Fily, if and only if the induced map gr(f) : gr(V) — gr(W) is bijective.

PROOF. If f is an isomorphism of filtered vector spaces, then gr(f) is clearly an isomor-
phism. Let us now assume that gr(f) is an isomorphism. We wish to show that for every
n € Z the induced map Fil"(f) : Fil"(V) — Fil"(W) is an isomorphism. Since each Fil"(f)
is injective by the bijectivity of f, it suffices to show

dimy, Fil"(V) = dimg, Fil"(W) for every n € Z.

The map gr(f) is an isomorphism of graded vector spaces by Lemma [2.3.7] and consequently
induces an isomorphism

gr’ (V) o~ gr"™(W) for every n € Z.
Hence for every n € Z we find
dimy, Fil"(V) =) dimg gr'(V) = Y _ dimy, gr'(W) = dim, Fil*(W)
>n >n
as desired. g

Example 2.3.9. Let us define L[1] to be the vector space L with the filtration

Fil*(L[1]) := {

L ifn<I1,
0 ifn>1
The bijective morphism L[0] — L[1] given by the identity map on L is not an isomorphism

in Fily, since Fil'(L[0]) = 0 and Fil}(L[1]) = L are not isomorphic. Moreover, the induced
map gr(L[0]) — gr(L[1]) is a zero map.

Proposition 2.3.10. Let L be an arbitrary field. For any V,W € Fily, there exists a natural
isomorphism of graded vector spaces

gr(VerL W) =gr(V) @ gr(W).

PROOF. Since we have a direct sum decomposition

g(V)ergW) =P | P «'(V)eLs/(W) |,
n€Z \i+j=n

it suffices to find a natural isomorphism

gr" (Ve W) = @ gr' (V) ®p gr! (W) for every n € Z. (2.7)
i+j=n

By Lemma we can choose bases (v;)) and (wj;) for V and W such that for every
n € Z the vectors (v;)i>n and (wj;);j>n respectively span Fil"(V) and Fil"(W). Let ©;y
denote the image of v;  under the map Fil'(V) — gr’(V), and let w;; denote the image of
w;,; under the map Fil/ (W) — gr/(W). Since each Fil*(V @ W) is spanned by the vectors
(Vi ks ® Wj1)itj>n, We obtain the identification by observing that both sides are spanned
by the vectors (U; ; @ Wj1)itj—n- O
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2.4. Properties of de Rham representations

Definition 2.4.1. We say that V' € Repg, (I'k) is de Rham if it is Byr-admissible. We
write RepfiQP;(F K) = Repgsr‘(r k) for the category of de Rham p-adic I'x-representations. In
addition, we write Dyt and Dggr respectively for the functors Dp,. and Dpg,g.
Example 2.4.2. Below are some important examples of de Rham representations.
(1) For every n € Z the Tate twist Q,(n) of Q, is de Rham; indeed, the inequality
dimg Dgr(Qp(n)) < dimg, Qp(n) =1
given by Theorem is an equality, as Dar(Qp(n)) = (Qp(n) ®g, Bar)"'* contains
a nonzero element 1 ® t~" by Theorem
(2) Every Ck-admissible representation is de Rham by a result of Sen.

(3) For every proper smooth variety X over K, the étale cohomology HZ (X3, Qp) is de
Rham by a theorem of Faltings as briefly discussed in Chapter [, Theorem

The general formalism discussed in §I| readily yields a number of nice properties for de
Rham representations and the functor Dggr. Our main goal in this subsection is to extend
these properties in order to incorporate the additional structures induced by the filtration
{ tnB(_i'_R on BdR~

Lemma 2.4.3. Given any n € Z, every V € Repg, (Tk) is de Rham if and only if V(n) is
de Rham.

nez

PROOF. Since we have identifications
V(n) =V ®Qp Qp(n) and = V(’I’L) ®Qp Qp(in)a

the assertion follows from Proposition [T.2.4] and the fact that every Tate twist of Q, is de
Rham as noted in Example 2.4.2] O

Proposition 2.4.4. Let V be a de Rham representation of I'x. Then V is Hodge-Tate with
a natural K-linear isomorphism of graded vector spaces

gr(Dar(V)) = Dur(V).
ProoOF. For every n € Z we have a short exact sequence
0 —— "B, —— t"Bjy —— "B /t""'B; —— 0,
which induces an exact sequence
r r r
0 — (Vag, "' Big) * — (Vag, t"Bjg) © —— (V &g, (" Bir/t""' Bip)) "
and consequently yields an injective K-linear map
. . r
gr"(Dar(V)) = Fil"(Dar (V))/ Fil" ™ (Dar (V) < (V @q, (1" Bi/t""' Big)) .

Therefore we obtain an injective K-linear map of graded vector spaces

n n r ~
gr(Dar(V)) — @ (V @q, (t"Bi/t" "' Bip)) ™ = (V @q, Bur)'* = Dur(V)
nez
where the middle isomorphism follows from Theorem [2.2.21] We then find

dimK DdR(V) = dimK gl"(DdR(V)) < dimK DHT(V) < dim(@p \%

where the last inequality follows from Theorem Since V' is de Rham, both inequalities
should be in fact equalities, thereby yielding the desired assertion. O
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Example 2.4.5. Let V' be an extension of Q,(m) by Q,(n) with m < n. We assert that V
is de Rham. By Lemma we may assume m = 0. Then we have a short exact sequence

0 —— Qu(n) 1% Q, — 0. (2.8)
Since the functor Dgg is left exact by construction, we obtain a left exact sequence
0 —— Dar(Qp(n)) —— Dar(V) —— Dar(Qp).

We wish to show dimg Dgr(V') = dimg, V = 2. Since we have
dimg Dar (Qp(n)) = dimgx Dar(Qp) =1
by Example it suffices to show the surjectivity of the map Dyr(V) — Dgr(Qp) = K.
As B:R is faithfully flat over Q,, the sequence yields a short exact sequence
0 —— Qu(n) ®qg, Bijr —— V ®q, Bjg — @ ®q, Bjg —— 0.
In addition, by Theorem and Proposition [2.2.15 we have identifications
(Qp(n) @q, Bip) ™ = (1" Bip)"* =0,
(Qp ®q, Bip)' ™ = (Bjp)'* = K.
We thus obtain a long exact sequence

0 —— 0 —— (V®q, BR)'* —— K —— HY(I'g,t"BJ).
Since we have (V ®q, Biz)'* € (V ®q, Bar)'* = Dar(V), it suffices to prove
H'(Tk,t"Bjz) = 0. (2.9)
By Theorem we have a short exact sequence
0 —— t""Bf, —— t"Bj; —— Cx(n) —— 0,
which in turn yields a long exact sequence
Cr(n)'s —— H' Tk, t""'Bjy) —— H'Y(Tk,t"Biz) —— H'(T'x,Ck(n)).
Then by Theorem in Chapter [[ we obtain an identification
H' T g, t""'Biy) 2 H' (T g, t"Bip). (2.10)

Hence by induction we only need to prove (2.9) for n = 1.

Take an arbitrary element oy € H 1(F K, tBIR). We wish to show a; = 0. Regarding o as
a cocycle, we use (2.10)) to inductively construct sequences (o) and (y.,) with the following
properties:

(i) am € H'(Tk,t™Bjy) and yp, € "B for all m > 1,
(i) amt1(y) = am(¥) +v(ym) — ym for all v € 'k and m > 1.

Now, since t is a uniformizer in B(TR as noted in Proposition [2.2.19] we may take an element
Y = Ym € Blz. Then we have

a1(7) +7(y) —y € H' Tk, t™Big) for all vy € 'k and m > 0,
and consequently find a1 () +7(y) —y = 0 for all v € I'x. We thus deduce a; = 0 as desired.



96 III. PERIOD RINGS AND FUNCTORS

Remark. It is a highly nontrivial fact that every non-splitting extension of Q,(1) by Q, in
Repg, (T'k) is Hodge-Tate but not de Rham. The existence of such an extension follows from
the identification
EXt(bp[FK] (Q@p(1),Qp) = Hl(FIOQp(_l)) =K

where the second isomorphism is a consequence of the Tate local duality for p-adic represen-
tations. Moreover, such an extension is Hodge-Tate as noted in Example The difficult
part is to prove that such an extension is not de Rham. For this part we need a very deep
result that every de Rham representation is potentially semistable.

Proposition 2.4.6. Let V be a de Rham representation of I'xr. For every n € Z we have
gr"(Dgr(V)) # 0 if and only if n is a Hodge-Tate weight of V.

PROOF. This is an immediate consequence of Proposition [2.4.4] and Definition O

Remark. Proposition 2:4.6] provides the main reason for our choice of the sign convention in
the definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of
a de Rham representation V' indicate where the filtration of Dgg(V') has a jump. In particular,
for a proper smooth variety X over K, the Hodge-Tate weights of the étale cohomology
H}, (X4, Qp) give the positions of “jumps” for the Hodge filtration on the de Rham cohomology
H: (X/K) by the isomorphism of filtered vector spaces

Dar(Hg (X5, Qp)) = Hig (X/K).

Example 2.4.7. The Tate twist Q,(m) of Q, is a 1-dimensional de Rham representation
with the Hodge-Tate weight —m as noted in Example [1.1.15 and Example Hence by
Proposition [2.4.6| we find

K forn<-m,
0 for n > —m.

Fil" (Dar (Qp(m))) = {

In particular, for m = 0 we obtain an identification Dqar(Q,) = K/0].
Proposition 2.4.8. For every V € Rep?‘QPp{(FK), we have a natural I g -equivariant isomor-
phism of filtered vector spaces
Dar(V) ®Kx Bar =V ®q, Bar.
PROOF. Since V is de Rham, Theorem [1.2.1| implies that the natural map
Dar(V) @k Bar — (V ®q, Bar) ®Kx Bar =V ®q, (Bar ®K Bar) — V ®q, Bar

is a I' g-equivariant isomorphism of vector spaces over Bygr. Moreover, this map is a morphism
of filtered vector spaces as each arrow above is easily seen to be a morphism of filtered vector
spaces. Hence by Proposition [2.3.8|it suffices to show that the induced map

gr(Dar(V) @k Bar) — gr(V ®q, Bar) (2.11)

is an isomorphism. By Proposition [2.3.10, Proposition and Theorem [2.2.21] we obtain
identifications

gr(Dar(V) @k Bar) = gr(Dar(V)) @k gr(Bar) = Dut(V) @K By,
gr(V ®q, Bar) =V ®q, gr(Bdr) =V ®q, Bur-
We thus identify the map with the natural map
Dyut(V) ®k Bur — V ®q, But
given by Theorem [1.2.1] The desired assertion now follows by Proposition O
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Proposition 2.4.9. The functor Dar with values in Filg is faithful and exact on Replels(FK).
PRrROOF. Let Veck denote the category of finite dimensional vector spaces over K. The
faithfulness of Dggr on Rep&i‘(F k) is an immediate consequence of Proposition since the

forgetful functor Filgy — Vecy is faithful. Hence it remains to verify the exactness of Dgr
on Repg:(F k). Consider an exact sequence of de Rham representations

0 U 1% W —— 0. (2.12)

The functor Dggr with values in Filg is left exact by construction. In other words, for every
n € Z we have a left exact sequence

We wish to show that this sequence extends to a short exact sequence. By Proposition [1.2.2
the sequence (2.12)) induces a short exact sequence of vector spaces

0 —— Dut(U) — Dur(V) —— Dur(W) —— 0.

Moreover, by the definition of Dy we find that this sequence is indeed a short exact sequence
of graded vector spaces. Then by Proposition we may rewrite this sequence as

0 —— gr(Dar(U)) — gr(Dar(V)) —— gr(Dar(W)) —— 0.
by Proposition Hence for every n € Z we have
dimg Fil"(Dar(V)) = > _ dimg gr'(Dar (V)

>n
=Y dimg gr'(Dar(U)) + Y dimg gr'(Dag (W)
i>n >n

thereby deducing that the sequence (2.13)) extends to a short exact sequence as desired. [

Corollary 2.4.10. Let V be a de Rham representation. Fvery subquotient W of V is a de
Rham representation with Dar (W) naturally identified as a subquotient of Dar(V') in Filk.

PRroOOF. This is an immediate consequence of Proposition and Proposition|2.4.9l [

Proposition 2.4.11. Given any V,W € Rep&E(I‘K), we have V ®q, W € Rep&E(FK) with
a natural isomorphism of filtered vector spaces

Dar(V) @k Dar(W') = Dgr(V ®Q, w). (2.14)

PRrROOF. By Proposition we find V ®q, W € Rep%ﬁ(FK) and obtain the desired
isomorphism as a map of vector spaces. Moreover, since the construction of the map
(2.14)) rests on the multiplicative structure of Bqr as shown in the proof of Proposition it
is straightforward to verify that the map is a morphism in Filx. Hence by Proposition
2.3:8 it suffices to show that the induced map

gr(Dar(V) @k Dar(W)) — gr(Dar(V ®q, W)) (2.15)

is an isomorphism. Since both V and W are Hodge-Tate by Proposition we have a
natural isomorphism

Dyt (V) @ x Dyt (W) = Dpp(V ®q, W) (2.16)

by Proposition [1.2.4, Therefore we complete the proof by identifying the maps and

(2.16)) using Proposition [2.3.10| and Proposition m O
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Proposition 2.4.12. For every de Rham representation V, we have \"(V') € RepleI;(I‘K)
and Sym™ (V') € Repg;(f’ K ) with natural isomorphisms of filtered vector spaces

A"(Dar(V')) & Dar(A"(V)) and Sym"(Dgr(V)) & Dar(Sym"(V)).

PROOF. Proposition implies that both A"(V) and Sym"™ (V') are de Rham for every
n > 1. In addition, Proposition [I.2.5] yields the desired isomorphisms as maps of vector
spaces. Then Corollary and Proposition together imply that these maps are

isomorphisms in Filg. O

Proposition 2.4.13. For every de Rham representation V, the dual representation V" is de
Rham with a natural perfect paring of filtered vector spaces

DdR(V) (=476 DdR(VV) = DdR(V ®QP Vv) — DdR(Qp) = K[O] (217)
PRrOOF. By Proposition we find VV € Repﬁin;(FK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition [2.4.11] implies that this pairing is a
morphism in Filg. We thus obtain a bijective morphism of filtered vector spaces

Dar (V)" — Dar(V").
Therefore by Proposition [2.3.8] it suffices to show that the induced map
gr(Dgr(V)) — gr(Dar(V'Y)) (2.18)
is an isomorphism. Since V' is Hodge-Tate by Proposition[2.4.4] we have a natural isomorphism
Dur(V)Y = Dyr(VY) (2.19)

by Proposition [1.2.6, We thus deduce the desired assertion by identifying the maps (2.18)
and (2.19) using Proposition m O

Let us now discuss some additional facts about de Rham representations and the functor
DdR-

Proposition 2.4.14. Let V be a p-adic representation of U'xc. Let L be a finite extension of
K with absolute Galois group I'r,.

(1) There exists a natural isomorphism of filtered vector spaces
Dyr,x (V) ®k L = Dgr, (V)
where we set Dar,x (V') == (V ®q, Bar)'® and Dgr,0.(V) := (V ®q, Bar)'*.
(2) V is de Rham if and only if it is de Rham as a representation of T'f.
PrOOF. We only need to prove the first statement, as the second statement immediately

follows from the first statement. Let L’ be the Galois closure of L over K with the absolute
Galois group I'zs and set Dag, 1/ (V) := (V ®q, Bar)' ™. Then we have identifications

DdR,K(V) ®K L = (DdR,K(V) ®K L/)Gal(Ll/L) and DdR,L(V) = DdR’L/(V)GaI(L,/L).

Hence we may replace L by L' to assume that L is Galois over K. Moreover, since the
construction of Bgr depends only on Cg, we get a natural L-linear map

Dar,x (V) ®x L — Dgr,.(V).

It is evident that this map induces a morphism of filtered vector spaces over L where the
filtrations on the source and the target are given as in Example We then have

Fil"(Dyr 1 (V) = Fil*(Dgg, (V) G2 E/5) for all n € Z,

thereby deducing the desired assertion by the Galois descent for vector spaces. U
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Remark. Proposition extends to any complete discrete-valued extension L of K inside
Ck, based on the “completed unramified descent argument” as explained in [BC, Proposition
6.3.8]. This fact has the following immediate consequences:

(1) Every potentially unramified p-adic representation is de Rham; indeed, we have
already mentioned this in Example [2.4.2] since being Cg-admissible is the same as
being potentially unramified as noted in Example

(2) For one-dimensional p-adic representations, being de Rham is the same as being
Hodge-Tate by Proposition [1.1.13| and Lemma [2.4.3

Example 2.4.15. Let n : 'x — Z; be a continuous character with finite image. Then
there exists a finite extension L of K with absolute Galois group I'z, such that Q,(n) is trivial

as a representation of I'y,. Hence by Example and Proposition [2.4.14 we find that Q,(n)

is de Rham with an isomorphism of filtered vector spaces

Dar(Qp(n)) ®x L = L[0],

and consequently obtain an identification
Dar(Qp(n)) = K[0] = Dar(Qp).
In particular, we deduce that the functor Dgr on Repg;(I‘ k) with values in Filg is not full.

We close this section by introducing a very important conjecture, known as the Fontaine-
Mazur conjecture, which predicts a criterion for the “geometricity” of global p-adic represen-
tations.

Conjecture 2.4.16 (Fontaine-Mazur [EM95]). Fiz a number field E, and denote by OF the
ring of integers in E. Let V be a finite dimensional representation of Gal(Q/E) over Q, with
the following properties:

(i) For all but finitely many prime ideals p of O, the representation V is unramified at
p in the sense that the action of the inertia group at p is trivial.

(ii) For all prime ideals of Of lying over p, the restriction of V' to Gal(@p/Ep) s de
Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of
the étale cohomology Hy,(Xg, Qp(m)) for some m,n € Z.

Remark. If V is one-dimensional, then Conjecture follows essentially by the class field
theory. For two-dimensional representations, Conjecture has been verified in many
cases by the work of Kisin and Emerton. However, Conjecture remains wide open for
higher dimensional representations.

The local version of Conjecture is known to be false. More precisely, there exists a
de Rham representation of I'r which does not arises as a subquotient of H}} (X7, Q,)(m) for
any proper smooth variety X over K and integers n, m.
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3. Crystalline representations

In this section we define and study the crystalline period ring and crystalline representa-
tions. Our primary reference for this section is Brinon and Conrad’s notes [BC| §9].

3.1. The crystalline period ring B

Throughout this section, we write W (k) for the ring of Witt vectors over k, and Ky for
its fraction field. Recall that we have fixed an element p’ € Op with (pb)Tj = p and set
§=1[p") —p € A
Definition 3.1.1. We define the integral crystalline period ring by

> n
Agris 1= { Zoann! € B(TR D ap € Ay with 7115130 an =0 } ,
n—

and write Bl 1= Aqis[1/p).

Remark. In the definition of A5 above, it is vital to consider the refinement of the discrete
valuation topology on B(TR as described in Proposition [2.2.16{ While the convergence of
n

the infinite sum Z an relies on the discrete valuation topology on BCTR, the limit of the
n!
n>0
coefficients a, should be taken with respect to the p-adic topology on Ajys.

We warn the readers that the terminology given in Definition [3.1.1| is not standard at
all. In fact, most authors do not give a separate name for the ring Agis. Our choice of the
terminology comes from the fact that Ac.s plays the role of the crystalline period ring in the
integral p-adic Hodge theory.

Proposition 3.1.2. We have t € Auis and P~ € pAeris.

PROOF. By Lemma [2.2.18 we may write [¢] — 1 = &c for some ¢ € Ajye. Then we obtain

an expression
o0

t:i(_l)nﬁ-l([e];l)n :Z(_l)n—l—l(n_l)!cn'%‘ (3.1)
n=1 n=1

We thus find ¢ € Aqyis as we have lim (n — 1)!Ic¢" = 0 in Ajy¢ relative to the p-adic topology.
n—oo

It remains to show P71 € pAeis. Let us set

= zp:(—mnﬂw. (3.2)

n

Since (n — 1)! is divisible by p for all n > p, we find t — £ € pAuis by . Hence it suffices
to prove P! € pAcs.

The terms for n < p in are all divisible by [e] — 1 in Ag;is, whereas the term for n = p
in can be written as

el —1)P el — 1)1
(_1)p+1(”pl) — (_1)p+1([]pl) ([e] = 1).

In other words, we may write
. —1)p1
i= (- 1) (a+ (-1pr EU)
p
for some a € Agis. It is therefore enough to show ([g] — 1)P~! € pAeis.
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Since we have ([g]—1)—[e — 1] € pAjnt C pAais, we only need to prove [(e — 1)P71] € pAcyis.
In addition, by Lemma we have

V(=1 ) == (")),

and consequently find that [(¢ — 1)P~1] is divisible by [p’]? = (€ + p)P. We thus deduce the
desired assertion by observing that &P =p - (p — 1)!- (§P/p!) is divisible by p in Acis. O

Remark. As a consequence, we find

Pl t

— = — ———— € Aqis-

pbop (1)
In fact, it is not hard to prove that for every a € A5 with HIR(a) = 0 we have a"/n! € Agyis
for all n > 1.

Corollary 3.1.3. We have an identification BT, [1/t] = Acis[1/1].

cris
PROOF. Proposition implies that p is a unit in Aqis[1/t], thereby yielding
B [1/t] = Acris[1/p, 1/1] = Aciis[1/1]
as desired. [

Definition 3.1.4. We define the crystalline period ring by
Beyis i= Bctis[l/t] = Acris[l/t]-

Remark. Let us briefly explain Fontaine’s insight behind the construction of B;s. The main
motivation for constructing the crystalline period ring Be,is is to obtain the Grothendieck mys-
terious functor as described in Chapter [[] Conjecture [[.2.3] Recall that, for a proper smooth
variety X over K with a proper smooth integral model X over O, the crystalline cohomol-
ogy HJ. (X, W(k)) admits a natural Frobenius action and refines the de Rham cohomology
H!z (X/K) via a canonical isomorphism

exis (X W () [1/p] @1, K = Hig (X/K).

Cris

In addition, since Aj,r is by construction the ring of Witt vectors over a perfect [Fj-algebra Op,
it admits the Frobenius automorphism ;¢ as noted in Chapter [[I, Example Fontaine
sought to construct Bcs as a sufficiently large subring of Bggr on which ¢j,s naturally ex-
tends. For Bgyg there is no natural extension of @j,s since ker(6[1/p]) is not stable under yjp¢.
Fontaine’s key observation is that by adjoining to Aj,s the elements of the form £ /n! for n > 1
we obtain a subring of Aj,¢[1/p] such that the image of ker(0[1/p]) is stable under ¢j,s. This
observation led Fontaine to consider the ring A defined in Definition The only issue
with Agsis is that it is not (Qy, I'x )-regular, which turns out to be resolved by considering the
ring Beris = Acris[l/t]-

Proposition 3.1.5. The ring Beis is naturally a filtered subalgebra of Bqr over Ky which is
stable under the action of I'k.

PRrROOF. By construction we have
Ainf[l/p] - Acris[l/p] = B(J;«is C Beais © BdR-

In addition, the proof of Proposition yields a unique homomorphism K — Bgg which
extends a natural homomorphism Ky — Ajy¢[1/p]. Hence by Example we naturally
identify Beyis as a filtered subalgebra of Bgr over Ky with Fil"(Beyis) := Beris N t"B;R.

It remains to show that Beris = Aeris[1/t] is stable under the action of I'k. Since 'y acts
on t by the cyclotomic character as noted in Theorem [2.2.21] we only need to show that Ay
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is stable under the action of I'x. Consider an arbitrary element v € 'y and an arbitrary
sequence (ay) in Ajps with lim a, = 0. Since ker(0) is stable under the I'-action as noted in
n—oo

Theorem [2.2.21} we may write v(§) = ¢,& for some ¢, € Ajye by Proposition We then
have lim v(an)c: = 0 as the I'k-action on Aj,¢ is evidently continuous with respect to the
n—oo

p-adic topology. Hence we find

o0 é"l’b o0 gn
¥ Z | = Zy(an)cza € Acris
n=0 n=0
as desired. 0

Remark. We provide a functorial perspective for the I' x-actions on Bs and Bqr which can
be useful in many occasions. Since the definitions of Bs and Bgr only depend on the valued
field Cg, we may regard Bc;is and Bggr as functors which associate topological rings to each
complete and algebraically closed valued field. Then by functoriality the action of ' on Cg
induces the actions of ' on Bis and Bgr. In particular, since By is a subfunctor of Bgr
we deduce that the I'g-action on Bjs is given by the restriction of the I'ix-action on Bggr as
asserted in Proposition [3.1.5

We also warn that FilO(BcriS) = Beris ﬂB:{R is not equal to B;is. For example, the element
/7" — 1
el -1

lies in Beris N B but not in B

cris”
In order to study the I'x-action on Bgis we invoke the following crucial (and surprisingly
technical) result without proof.
Proposition 3.1.6. The natural I i -equivariant map Beris @k, K — Bgr 15 injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving
the semistable period ring can be found in Fontaine and Ouyang’s notes [FOl Theorem 6.14].
Note however that the assertion is obvious if we have K = K, which amounts to the condition
that K is unramified over Q.

Proposition 3.1.7. There exists a natural isomorphism of graded K -algebras
gr(Beris @1, K) = gr(Bar) & Bur.

PrRoOOF. We only need to establish the first identification as the second identification
immediately follows from Theorem [2.2.21] as noted in Example By Proposition |3.1.6
the natural map Beris ®kx, i — Bgr induces an injective morphism of graded K-algebras

gr(Bcris ®K0 K) — gI'(BdR). (33)
In particular, we have an injective map
8r’(Beris @1, K) — gr’(Bar) = Cx
where the isomorphism is induced by HIR. Moreover, this map is surjective since the image
of Beis ®k, K in Bgr contains Ajn¢[1/p] and consequently maps onto Cx by HXR. Therefore
we obtain an isomorphism
g1° (Baris @, K) = g1’ (Bar) = Cr.

This implies that each gr™(Beris® Kk, K ) is a vector space over Cx. Moreover, each gr'(BeisQ k,
K) contains a nonzero element given by ¢" ® 1. Hence the injective map (3.3) must be an
isomorphism since each gr”(Bgr) has dimension 1 over Cg. O
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Theorem 3.1.8 (Fontaine [Fon94|). The ring Beyis is (Qp, 'k )-reqular with B};ﬁ ~ K.

PRroOOF. Let C.s denote the fraction field of Bs. Proposition implies that Ccs is
a subfield of Bgr which is stable under the action of I'x,. Hence we have Ky C Bcrr’fs C C’gﬁ
Then Proposition and Theorem [2.2.21] together yield injective maps

BlE@g, K~ By =K  and  CLE®k, K — B 2K,

cris cris

thereby implying Ko = B'r — ol

Cris cris’

It remains to check the condition in Definition Consider an arbitrary nonzero
element b € B on which 'k acts via a character n : 'y — Q;. We wish to show that b
is a unit in Beyig.

By Proposition we may write b = t°b’ for some V' € (Bjz)* and i € Z. Since ¢ is a
unit in B by construction, the element b is a unit in Beyis if and only if &’ is a unit in Beys.
Moreover, Theorem implies that I'x acts on ¥’ = b-t~* via the character ny~*. Hence
we may replace b by b to assume that b is a unit in B(J{R.

Since 65 is I' k-equivariant as noted in Theorem [2.2.21] the action of I'x on 61, (b) € Cx
is given by the character n. Then by the continuity of the I'x-action on Cx we find that
n is continuous. Therefore we may consider 7 as a character with values in ZX. Moreover,

we have G(TR(b) # 0 as b is assumed to be a unit in BIR. Hence Theorem implies that
n~1(Ik) is finite.

Let us denote by K" the maximal unramified extension of K in K, and by Kun the p-adic
completion of K. By definition K" is a p-adic field with Ix as the absolute Galois group.
Therefore by our discussion in the preceding paragraph there exists a finite extension L of

KW with the absolute Galois group I'y, such that 77_1 becomes trivial on I'y, C I . Since '
acts on 015 (b) via n, we find 615 (b) € chr = (CEL = L by Theorem [3.1.12| in Chapter

Let us write W (k) for the ring of Witt vectors over k, and KU for the fraction field of
W (k). Proposition [2.2.15| yields a commutative diagram

K5 ——— Aing[1/p]

/ I

+
L — By

\ PIR

Ck
where all maps are I'g-equivariant. I\E(Eeover, both horizontal maps are injective as @1 and
L are fields. We henceforth identify Kj" and L with their images in Bqr. Then we have
K§™ C Awe[1/p] € Beris. (3.5)
We assert that b lies in (the image of) L. Let us write b := 01 (). If suffices to show

b = b. Suppose for contradiction that b and b are distinct. Since we have GCTR(?)) =b= 01:(b)

by the commutativity of the diagram (3.4]), we may write b — b = t/u for some j > 0 and
u € (BJg)*. Moreover, we find

(b= b) = (8) —(B) =n(1)(b—b)  for every v € T,
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Then under the I'ix-equivariant isomorphism
j j+1 ~ .
t! BI /U Bl = Ck(4)

given by Theorem the element b — b € By yields a nonzero element in Cr(j) on
which I'x acts via the character . Therefore Theoremimplies that (x/n~1)(Ix) is finite.
Since n~1(I) is also finite as noted above, we deduce that x’(Ix) is finite as well, thereby
obtaining a desired contradiction by Lemma [1.1.7

Let us now regard b as an element in L. Proposition [2.2.15] implies that L is a finite
extension of K§". Hence we can choose a minimal polynomial equation

b+ ab o fag b+ ag=0 with a,, € @1.
Since the minimality of the equation implies ag # 0, we obtain an expression
I —agl(bd*1 +ab? 4.4 ag—1).
We then find b~! € B by , thereby completing the proof. O

Our final goal in this subsection is to construct the Frobenius endomorphism on Beis. To
this end we state another technical result without proof.

Proposition 3.1.9. Let A be the Aj¢-subalgebra in Aig[1/p] generated by the elements of

cris

the form &"/n! with n > 0.

(1) The ring Aes is naturally identified with the p-adic completion of A2

cris”’
(2) The action of I' on Acis 1S continuous.

Remark. In fact, Fontaine originally defined the ring A..s as the p-adic completion of Agris,

and obtained an identification with our definition of A.ss. The proof requires yet another
description of the ring A.is as a p-adically completed tensor product. The readers can find a
sketch of the proof in [BC, Proposition 9.1.1 and Proposition 9.1.2].

Lemma 3.1.10. The Frobenius automorphism of Ains uniquely extends to a Ik -equivariant
continuous endomorphism o+ on Bctis.

PrOOF. The Frobenius automorphism of Ajys uniquely extends to an automorphism on
Aing[1/p], which we denote by ¢ins. By construction we have

pnt(€) = (@) —p = —p=(E+pP —p (3.6)
Hence we may write pin(§) = £P + pc for some ¢ € Ajy.
Let us define AY.  as in Proposition Then we have

emt(§) =p- (c+ (p— 1! (£7/ph),

and consequently find

(€7 /nl) = (" /nl) - (c+ (p— 1! (€7/pN))" € Adye  foralln >1

by observing that p"/n! is an element of Z,. Hence AY._ is stable under (i,¢. Moreover, by

construction @i,s is I'g-equivariant and continuous on Ajn¢[1/p] with respect to the p-adic
topology. We thus deduce by Proposition that the endomorphism i, on Agris uniquely
extends to a continuous I'x-equivariant endomorphism ¢+ on B;is = Aais[1/p)]. O
Remark. The identity shows that ¢ine(€) is not divisible by &, which implies that ker(9)
is not stable under ¢;,;. Hence the endomorphism ¢t on Bc+ris (or the Frobenius endomorphism
on Bgs that we are about to construct) is not compatible with the filtration on Bgg.
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Proposition 3.1.11. The Frobenius automorphism of Ainr naturally extends to a I i -equivariant
endomorphism ¢ on Beis with o(t) = pt.

PROOF. As noted in Lemma the Frobenius automorphism of Aj,; uniquely ex-
tends to a I'x-equivariant continuous endomorphism ¢ on Bctis. In addition, the proof of
Proposition shows that the power series expression

(o]
gl —1)"
SEIRICEL
n=1
converges with respect to the p-adic topology in Aeis. Hence we use Lemma [2.2.20] and the
continuity of o+ on Ay to find

o) = (-t D= Sm et 12" ey pioge) =
n=1 n=1

Since I'c acts on t via ¥, it follows that ¢+ uniquely extends to a I'x-equivariant endomor-
phism ¢ on Beis = B, [1/t]. O

Remark. The endomorphism ¢ is not continuous on B, even though it is a unique ex-
tension of the continuous endomorphism ¢+ on Bctis. The issue is that, as pointed out by
Colmez in [Col98], the natural topology on B induced by the p-adic topology on Agis does

cris
not agree with the subspace topology inherited from Beys.

Definition 3.1.12. We refer to the endomorphism ¢ in Proposition [3.1.11] as the Frobenius
endomorphism of Bis. We also write

B.:={b€ Buis: p(b) =0}
for the ring of Frobenius-invariant elements in Beis.

Remark. In Chapter [[V] we will use the Fargues-Fontaine curve to prove a surprising fact
that B, is a principal ideal domain.

We close this subsection by stating two fundamental results about ¢ without proof.
Theorem 3.1.13. The Frobenius endomorphism ¢ of Beis 1S injective.

Theorem 3.1.14. The natural sequence

0 » Qp B, » Bar/Bijr — 0

15 exact.

Remark. We will prove both Theorem [3.1.13] and Theorem in Chapter [[V] using the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve does not rely on anything that we haven’t discussed so far in this section. The
readers can also find a proof of Theorem in [FOl Theorem 6.26]. We also remark that,
as mentioned in [BC, Theorem 9.1.8], there was no published proof of Theorem prior
to the work of Fargues-Fontaine [FF18].

Definition 3.1.15. We refer to the exact sequence in Theorem as the fundamental
exact sequence of p-adic Hodge theory.
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3.2. Properties of crystalline representations

Definition 3.2.1. We say that V € Repr (Tk) is crystalline if it is Bers-admissible. We
write Reprf;S(F K) = Repggris(f‘ k) for the category of crystalline p-adic I'g-representations.
In addition, we write D.;s the functors Dpg

Example 3.2.2. We record some essential examples of crystalline representations.
(1) Every Tate twist Qp(n) of @, is crystalline; indeed, the inequality
dimg Deris(Qp(n)) < dimg, Qp(n) =1

given by Theorem is an equality, as Deris(Qp(n)) = (Qp(n)®g, Beris)'* contains
a nonzero element 1 ® ¢t~ by Theorem |2.2.21

(2) For every proper smooth variety X over K with with a proper smooth integral
model & over O, the étale cohomology HZ (X5, Qp) is crystalline by a theorem of
Faltings as discussed in Chapter [, Theorem moreover, there exists a canonical
isomorphism

Deris(Hg (X7, Qp)) = Heris (X /Ko) = Hi(X/W (K))[1/p]
where His(Xyx/W (k)) denotes the crystalline cohomology of Xj.

(3) For every p-divisible group G over O, the rational Tate module V,,(G) is crystalline
as proved by Fontaine; indeed, there exists a natural identification

DcriS(%(G)) = D(é) [1/17]

where D(G) denotes the Dieudonné module associated to G := G x o, k as described
in Chapter [[I, Theorem [2.3.6

We aim to promote D5 to a functor that incorporates both the Frobenius endomorphism
and the filtration on B.s. Let us denote by ¢ the Frobenius automorphism of Ky as defined
in Chapter [[I] Definition [2.3.3] The readers may wish to review the definition and basic
properties of isocrystals as discussed in Chapter [T, Definition and Lemma

Definition 3.2.3. A filtered isocrystal over K is an isocrystal N over K, together with a
collection of K-spaces { Fil"(Nx) } which yields a structure of a filtered vector space over K
on Ni := N ®g, K. We denote by MF%. the category of filtered isocrystals over K with the
natural notions of morphisms, tensor products, and duals inherited from the corresponding
notions for Filx and the category of isocrystals over Kj.

Remark. Many authors use an alternative terminology filtered w-modules.

Example 3.2.4. Let X be a proper smooth variety over K with a proper smooth integral
model X over Ok. The crystalline cohomology Heris( X/ Ko) = H (X /W (k))[1/p] is natu-
rally a filtered isocrystal over K with the Frobenius automorphism ¢%, induced by the relative
Frobenius of Xk and the filtration on H, (X}/Ko) ®k, K given by the Hodge filtration on
the de Rham cohomology Hl; (X/K) via the canonical comparison isomorphism

eris (X / Ko) @K K = Hip (X/K).

cris
Lemma 3.2.5. The automorphism o on Ky extends to the endomorphism ¢ on Beis.
PROOF. By the proof of Proposition [2.2.15, the natural injective map Ky —— Ajn¢[1/p] is

a unique lift of the natural map & — Op. Hence o extends to pi,r on Aje[1/p| by definition,
and consequently extends to ¢ by Proposition [3.1.12 U
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Lemma 3.2.6. Let N be a finite dimensional vector space over Ky. FEwvery injective o-
semilinear additive map f: N — N is bijective.

PRrROOF. The additivity of f implies that f(IN) is closed under addition. Moreover, for all
c € Ky and n € N we have

cf(n) = o(0™}(e)f(n) = f(o~ (c)n) € F(N).
Therefore f(N) is a subspace of N over Ky. We wish to show f(IN) = N. Let us choose a
basis (n;) for N over Kj. It suffices to prove that the vectors f(n;) are linearly independent
over Ky. Assume for contradiction that there exists a nontrivial a relation ) ¢; f(n;) = 0 with
¢; € Ky. Then we find f (D> o(¢;)n;) = 0 by the o-semilinearity of f, and consequently obtain
a relation > o(¢;)n; = 0 by the injectivity of f. Hence we have a nontrivial relation among
the vectors n; as ¢ is an automorphism on Ky, thereby obtaining contradiction as desired. [

Proposition 3.2.7. Let V be a p-adic representation of I'xc. Then Deis(V) = (V®q, Beis)'%
1s naturally a filtered isocrystal over K with the Frobenius automorphism 1®¢ and the filtration
on Deis(V) ik = Dais(V) @k, K given by

Fil" (Deris (V) i) := (V ®q, Fil"(Beris @1, K))TE.

PROOF. Since 'k acts trivially on K, we have a natural identification
Dcris(V)K - (V ®Qp Bcris)rK ®K0 K = (V ®Qp (Bcris ®K0 K))FK-

Then Proposition implies that Deis(V)x is a filtered vector space over K with the
filtration Fil"(Dcs(V) k) as defined above. Therefore it remains to verify that the map 1 ® ¢
is o-semilinear and bijective on Deis(V). For arbitrary v € V,b € Bes, and ¢ € Ky we have

(1@ @) (c(v@b) =1@)(vabe)=veeb)e(c)=e() (10e)(veb).

Hence by Lemma we find that the additive map 1 ® ¢ is o-semilinear. Moreover, the
map 1 ® ¢ is injective on Deis(K) by Theorem [3.1.13] and the left exactness of the functor
D¢yis. Thus we deduce the desired assertion by Lemma |3.2.6 O

Proposition 3.2.8. Let V be a crystalline representation of . Then V' is de Rham with a
natural isomorphism of filtered vector spaces

Deris(V) ik = Deris(V) ® Ky K = Dgr(V).
PROOF. Proposition and Proposition together imply that the natural map

Buis @k, K — Bgr identifies Beis ®x, K as a filtered subspace of Bqr over K; in other
words, we have an identification

Fil"(Beris @Ky K) = (Beris @k, K) N Fil"(Bar) for every n € Z.
Therefore Proposition yields a natural injective morphism of filtered vector spaces
Deis(V) i = (V ®q, (Bexis @k, K))' — (V ®g, Bar)'* = Dar(V)
with an identification
Fil"(Deis(V) @y K) = (Deris(V') @k, K) NFil"(Dar(V)) for every n € Z.
We then find
dimg, Deris(V) = dimg Deris(V)x < dimg Dgr(V) < dimg, V

where the last inequality follows from Theorem Since V is crystalline, both inequalities
should be in fact equalities, thereby yielding the desired assertion. O
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Example 3.2.9. Let n : I'r — Q) be a nontrivial continuous character which factors
through Gal(L/K) for some totally ramified finite extension L of K. Then Q,(n) is de
Rham by Proposition [2.4.14] We assert that Q,(n) is not crystalline. Let us write I'y, for

the absolute Galois group of L. Since L is totally ramified over K, we have Bt ~ g by

cris
Theorem and the fact that the construction of B depends only on Cg. Moreover, we
have Q,(n)'* = Q,(n) and Q, (1) /K) = 0 by construction. Hence we find an identification

Deris (Qp (1)) = (Qp(n) ®g, Beris) ¥ = ((Qp(n) ©q, Beris)™#)
= <Qp(n> ®q, B(l;gs)Gal(L/K) o~ (Qp(n) ®Q, KO)Gal(L/K)

= Qu() @) g, Ko =0,
thereby deducing the desired assertion.
We now adapt the argument in to verify that the general formalism discussed in

extends to the category of crystalline representations with the enhanced functor D;s that
takes values in MF?}.

Proposition 3.2.10. Fvery V € RepE;S(F k) induces a natural T i -equivariant isomorphism
Dcris(V) ®K0 Bcris =2V ®Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces a
K-linear isomorphism of filtered vector spaces

Dcris(V)K ®K (Bcris ®K0 K) =2V ®Qp (Bcris ®K0 K)
PROOF. Since V is crystalline, Theorem implies that the natural map
Dcris(v) ®K0 cris T (V ®Qp Bcris) ®K0 Bcris =2V ®Qp (Bcris ®K@ Bcris) —V ®Qp Bcris
is a I'k-equivariant B.yis-linear isomorphism. Moreover, this map is visibly compatible with
the natural Frobenius endomorphisms on Deris(V) ® Baris = (V ®q, Beris)'* ® Ko Beris and
V ®q, Beris respectively given by 1 ® ¢ ® ¢ and 1 ® . Let us now consider the induced
K-linear bijective map
(Dcris(v)K QK (Bcris ®K0 K) —V ®Qp (Bcris ®K0 K)

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore
by Proposition [2.3.8] it suffices to show that the induced map

gr (Dcris(V)K ®K (Bcris ®K0 K)) — gr (V ®Qp (Bcris ®K0 K)) (37)

is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of
graded vector spaces
gr(Dcris(V)K) = gr(DdR(V)) = DHT(V)
by Proposition and Proposition [2.4.4] Hence Proposition [2.3.10] and Proposition [3.1.7
together yield identifications
8t (Deris(V) ik @k (Beris @ K)) = gr(Deris (V) k) @k g1(Beris @k, K) = Dur(V) ®k Bur,
gr (V ®Q, (Bais ®k, K)) =V ®q, gr(Bais ®k, K) =V @q, Bur.
We thus identify the map (3.7) with the natural map
Dur(V) ®x Bur — V ®q, Bur

given by Theorem thereby deducing the desired assertion by the fact that V' is Hodge-
Tate. U
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Proposition 3.2.11. The functor Deis with values in MFY- is faithful and ezact on Reprf;s(FK).

PROOF. Let Vecg, denote the category of finite dimensional vector spaces over K. The
faithfulness of Dcis on Repf’Qf;S (T'k) follows immediately from Proposition since the for-
getful functor MF?} — Vecg, is faithful. Hence it remains to verify the exactness of Dyis
on Rep?Qf;S (T'k). Consider an arbitrary exact sequence of crystalline representations

0 U \%4 W » 0.
We wish to show that the sequence
0 —— Deis(U) —— Deais(V) —— Dgis(W) —— 0 (3.8)

is exact in MF¥.. This sequence is exact in Vecg, by Proposition and thus is also exact
in the category of isocrystals over Ky. Moreover, Proposition and Proposition [2.4.9
together imply that we can identify the induced sequence of filtered vector spaces

0 —— Duis(U)gk —— Deis(V)k —— Deris(W)g —— 0
with the exact sequence of filtered vector spaces
0 —— Dgr(U) —— D4r(V) —— Dgr(W) —— 0
induced by . We thus deduce that the sequence is exact in MFY. as desired. O

Corollary 3.2.12. Let V be a crystalline representation. Fvery subquotient W of V is a
crystalline representation with Deyis(W') naturally identified as a subquotient of Dar (V).

PROOF. This is an immediate consequence of Proposition[I.2.3|and Proposition[3.2.11] O

Proposition 3.2.13. Given any V,W € Rep?Qf;S(FK), we have V ®@q, W € Reprf;S(FK) with
a natural isomorphism of filtered isocrystals

Dcris(v) ®K0 Dcris(W) = Dcris(v ®@p W) (39)

Proor. By Proposition we find V ®q, W € Rep&i)s(I‘ k) and obtain the desired
isomorphism as a map of vector spaces. Moreover, since the construction of the map
(3.9) rests on the multiplicative structure of Bes as shown in the proof of Proposition
it is straightforward to verify that the map is a morphism of isocrystals over Ky. In
addition, Proposition [3.2.8 implies that we can identify the induced bijective K-linear map

Deris(V) K @K Deris(W)gx — Denis(V ®q, W)k
with the natural isomorphism of filtered vector spaces
Dar(V) @k Dar(W)x = Dar(V ®@q, W)
given by Proposition [2.4.11) Therefore we deduce that the map (3.9) is an isomorphism in
MF%, as desired. O
Proposition 3.2.14. For every crystalline representation V', we have N"*(V') € Reprf;S(FK)
and Sym™ (V') € Rep&s(r K) with natural isomorphisms of filtered isocrystals

A" (Deris(V)) = Deyis(A™(V)) and Sym"™(Deris(V)) 2 Deyis(Sym™ (V).

PROOF. Proposition implies that both A"(V) and Sym"™ (V') are crystalline for every
n > 1. In addition, Proposition yields the desired isomorphisms as maps of vector
spaces. Then Corollary and Proposition together imply that these maps are
isomorphisms in MF¥.. O
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Proposition 3.2.15. For every crystalline representation V', the dual representation V'V is
crystalline with a natural perfect pairing of filtered isocrystals

Dcris(V) ®K0 Dcris(vv) = Dcris(V ®Qp Vv) — Dcris(Qp)-
ProOOF. By Proposition we find VV € Rep&s(FK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition [3.2.13] implies that this pairing is a
morphism in MF%.. We thus obtain a bijective morphism of filtered isocrystals

Deris(V)Y — Deris(VY). (3.10)

Furthermore, by Proposition [3.2.8 we identify the induced morphism of filtered vector spaces
Deris(V) i — Dexis(VY )k

with the natural isomorphism Dag (V) & Dgr (V") in Filk given by Proposition[2.4.13] Hence

we deduce that the map is an isomorphism in MF%, thereby completing the proof. [

Finally, we discuss some additional key properties of crystalline representations and the

functor D¢.is which resolve the main defects of de Rham representations and the functor Dyg.

Definition 3.2.16. Let M be a module over a ring R with an additive endomorphism f. For
every r € R, we refer to the subgroup
M= ={meM: f(m)=rm}
as the eigenspace of f with eigenvalue r.
Lemma 3.2.17. We have an identification
BY NFil°(Beais ©x, K) = BZL N Bl = Q.
PROOF. By Proposition and Theorem we find
BYL NFil°(Beis ®x, K) € BZL NFil’(Bar) = BYL' N Big = Qp,

and thus obtain the desired identification as both B#=! and Fil® (Beris ® K, K) contain Q,. [

cris
Proposition 3.2.18. Every V € Reprf;S(FK) admits canonical isomorphisms
V 2 (Dexis(V) @10 Beris)?~" N FIL (Dexis (V) i @i (Beris @10 K))
> (Deris(V') ® Ky Bexis) ¥~ NFil® (Deris (V) k @k Bar) -
PROOF. Proposition yields a natural I'g-equivariant isomorphism
Deis(V) @K Beris =V ®q, Beris

which is compatible with the natural Frobenius endomorphisms on both sides and induces an
isomorphism of filtered vector spaces

Deiis(V) k @k (Beris @k K) 2V ®q, (Beris @k, K).
In addition, there exists a canonical isomorphism of filtered vector spaces

Deris(V) ik @k Bar = Dar(V) @k Bar =V ®q, Bar
given by Proposition [3.2.8] and Proposition [2.4.8] Therefore we have identifications

(Deris(V) ®xo Beris) 7= 2V ®q, BEL,
Fil® (Dexis (V) ik ©1¢ (Beris @10 K)) 2V ®q, Fil’(Beris @1, K),
Fil® (Devis(V) k ®K Bar) =V ®q, Bix.

The desired assertion now follows by Lemma Il
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Theorem 3.2.19 (Fontaine [Fon94]). The functor Deis with values in MF%. is ezact and
fully faithful on Reprf;S(FK).

PROOF. By Proposition|3.2.11{we only need to establish the fullness of D5 on Reprf;S(F K)-
Let V and W be arbitrary crystalline representations. Consider an arbitrary morphism
[ Deris(V') — Deris(W) in MF%.. Then f gives rise to a I'g-equivariant map

®1
\% ®Qp Bcris = Dcris(v) ®K0 Bcris fi) Dcris(W) ®K0 Bcris =W ®Qp Bcris (311)

where the isomorphisms are given by Proposition [3.2.10} Moreover, Proposition implies
that this map restricts to a linear map ¢ : V. — W. In other words, we may identify the
map (3.11)) as ¢ ® 1. In particular, since the isomorphisms in are I'g-equivariant, we
recover f as the restriction of ¢ ® 1 on (V ®q, Beris)' 2 (Deis(V) @y Beris)'® 22 Deyis (V).
This precisely means that f is induced by ¢ via the functor Dcyis. U

Proposition 3.2.20. Let V be a p-adic representation of U'xc. Let L be a finite unramified
extension of K with the residue field extension | of k. Denote by 'y, the absolute Galois group
of L and by Lg the fraction field of the ring of Witt vectors over I.

(1) There exists a natural isomorphism of filtered isocrystals
Deris,k (V) ® Ky Lo = Deris,.(V')
where we set Deis (V) = (V ®q, Beris)'® and Deris, (V) :== (V ®q, Beris)'t

(2) V is crystalline if and only if it is crystalline as a representation of T'r.

PrOOF. We only need to prove the first statement, as the second statement immediately
follows from the first statement. By definition L and Lg are respectively unramified extensions
of K and Ky with the residue field extension [ of k. Hence L and Lg are respectively Galois
over K and Ky with Gal(L/K) = Gal(Lo/Kp). Furthermore, since the construction of Beis
depends only on Cg, we have an identification

Dcris,K(V) - Dcris,L(V)Gal(L/K) - Dcris,L(V)Gal(LO/KO)-
Then by the Galois descent for vector spaces we obtain a natural bijective Lg-linear map
Dcris,K(V) ®K0 LO B Dcris,L(V)- (312)

This map is evidently compatible with the natural Frobenius automorphisms on both sides
induced by ¢ as explained in Lemma [3.2.5 and Proposition [3.2.7 Moreover, Proposition

2.4.14 and Proposition together imply that the map (3.12) induces a natural L-linear
isomorphism of filtered vector spaces

(Dcris,K(V) ®K0 K) K L= Dcris,L(V) ®L0 L.
We thus deduce that the map (3.12) is an isomorphism of filtered isocrystals over L. O

Remark. Proposition [3.2.20] also holds when L is the completion of the maximal unramified
extension of K. As a consequence, we have the following facts:

(1) Every unramified p-adic representation is crystalline.

cris

(2) For a continuous character n: I'x — Z, we have Q,(n) € Repg”(I'k) if and only
if there exists some n € Z such that nx™ is trivial on Ik.
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On the other hand, Example shows that Proposition fails when L is a ramified
extension of K. Fontaine interpreted this “failure” as a good feature of the crystalline con-
dition, and conjectured that the crystalline condition should provide a p-adic analogue of the
Néron-Ogg-Shafarevich criterion introduced in Theorem of Chapter [} more precisely,
Fontaine conjectured that an abelian variety A over K has good reduction if and only if the
rational Tate module V,,(A[p>]) is crystalline. Fontaine’s conjecture is now known to be true
by the work of Coleman-lovita and Breuil.

We conclude this section with a discussion of a classical example which is enlightening in
many ways. We assume the following technical result without proof.

Proposition 3.2.21. The continuous map log : Zy(1) — B(TR extends to a I i -equivariant

homomorphism log : Aing[1/p]* — By such that log([p’]) is transcendental over the fraction
field of Beyis-

Example 3.2.22. The Tate curve E, is an elliptic curve over K with E,(K) = K /p* where
we set pZ = {p" : n € Z }. We assert that the rational Tate module V,(E,[p*]) is de Rham
but not crystalline. Tt is evident by construction that e and p’ form a basis of V,(E,[p™])
over Q,. Moreover, for every v € I'x we have

v(e) = eX) and v(p’) = p’e) (3.13)
for some c(v) € Z,. Hence V,(Ep[p™]) is an extension of @, by Q,(1) in Repg,(I'x), and
thus is de Rham by Example

We aim to present a basis for Dar (V,(Ep[p™])) = (Vp(Ep[p™]) ®qg, Bar)'%. By (3.13) we
find e®@t! € Dar(V,(E,[p™])). Let us now consider the homomorphism log : Aj¢[1/p]* —

B, as in Proposition and set u := log([p"]). Then for v € T'g we find
Y(u) = (log([p’]) = log([y(p")]) = log([p’e"™]) = log([p’]) + ¢(7) log([e]) = u + c(v)t
by and Lemma and consequently obtain
Y—e@ut™ +p ®1) = =XV @ (u+c(Nt)x(1) Tt +p e @1
=@t +e(y)+e(r) (@) +p @1
=—cut l+pP el

by (3.13) and Theorem [2.2.21} In particular, we have —e @ ut ' +p’ @1 € Dar (Vp(Ep[p™])).
Since the elements e ® t~! and —e @ ut~' 4+ p® ® 1 are linearly independent over Byg, they

form a basis for Dar(V,(Ep[p™])) = (Vp(Ep[p™]) @g, Bar)" .
Let us now consider an arbitrary element x € Deis(Vp(Ep[p™])) = (Vu(EL[p™]) ®q,

BcriS)FK . We may uniquely write z = e ® ¢ + P’ ® d for some ¢, d € Beis. Moreover, since we
have Deyis(Vp(Ep[p™])) € Dar(Vp(Ep[p™])) there exist some 7, s € K with

z=r- (@t ) +s (—e@u Tl +pP @) =@ (r—su)t T +p’ @s.

Then we find ¢ = (r —su)t~!, and consequently obtain s = 0 by Proposition Therefore
we deduce that every element in Deis(V,(Ep[p™])) ®k, K is a K-multiple of e @ t71. In
particular, we find dimg, Deris(Vp(Ep[p™])) < 1, thereby concluding that V,(E,[p*]) is not
crystalline.

Remark. Fontaine constructed the semistable period ring Byt as the Bcs-subalgebra of Byr
generated by log([p’]).



CHAPTER IV

The Fargues-Fontaine curve

1. Construction

Our main objective in this section is to discuss the construction of the Fargues-Fontaine
curve. The primary references are Fargues and Fontaine’s survey paper [FF12| and Lurie’s
notes [Lur]

1.1. Untilts of a perfectoid field

Throughout this chapter, we let F' be an algebraically closed perfectoid field F' of charac-
teristic p with the valuation vp, and write mp for the maximal ideal of Or. We also denote
by Apns = W(Op) the ring of Witt vectors over O, and by W (F') the ring of Witt vectors
over F. In addition, for every ¢ € F' we write [c] for its Teichmiiller lift in W (F).

Definition 1.1.1. An untilt of F' is a perfectoid field C' together with a continuous isomor-
phism ¢ : F ~ C”.

Example 1.1.2. The trivial untilt of F is the field F' with the natural isomorphism F = F°
given by Corollary 2.1.13] in Chapter [TI}

Definition 1.1.3. Let C be an untilt of F with a continuous isomorphism ¢ : F' ~ C”.

(1) We define the sharp map associated to C' as the composition of the maps

F—"5(C"=lmC—C
—

x—xP
where the last arrow is the projection to the first component.
(2) For every ¢ € F, we denote its image under the sharp map by ¢, or often by cf.

(3) We define the normalized valuation on C' to be the unique valuation v¢ with vp(c) =
ve(ch) for all ¢ € F as given by Proposition from Chapter m

Our first goal in this subsection is to prove that every untilt of F' is algebraically closed.

Lemma 1.1.4. Let L be a complete nonarchimedean field, and let f(x) be an irreducible
monic polynomial over L with f(0) € Orp. Then f(x) is a polynomial over Of,.

PRrROOF. Let us choose a valuation vy, on L. Take a finite Galois extension L’ of L such

that f(z) factors as
d

f(z) = H(x —7) with 7; € L'.
i=1
The valuation vy, uniquely extends to a Gal(L'/L)-equivariant valuation vz, on L'. In par-
ticular, the roots r; all have the same valuation as they belong to the same Gal(L’/L)-orbit.
Since we have f(0) = (—1)%riry---ry € O, we find that each 7; has a nonnegative valuation.
Hence each coefficient of f(z) has a nonnegative valuation as well. g

113
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Proposition 1.1.5. Let C' be an untilt of F', and let f(x) be an irreducible monic polynomial
of degree d over C. For every y € C, there exists an element z € C' with

voly —z) 2ve(f(y)/d  and  ve(f(2) 2 vep) +vo(f(y).

PrROOF. We may replace f(z) by f(x + y) to assume y = 0. Our assertion is that there
exists an element z € C' with

ve(z) 2 ve(f(0))/d  and  wve(f(2) 2 velp) +vo(f(0)). (1.1)

If we have f(0) = 0, the assertion is trivial as we can simply take z = 0. We henceforth
assume f(0) # 0. Since F' is algebraically closed, the multiplication by d is surjective on the
value group of F. Hence Proposition in Chapter [[T]] implies that the multiplication by
d is also surjective on the value group of C'. In particular, there exists an element a € C with
dvc(a) = vo(f(0)). Then we can rewrite the inequalities in as

vo(z/a) >0 and Ve (f(a : (z/a))/ad> > ve(p).
Therefore we may replace f(z) by the monic polynomial f(a - x)/a to assume v (f(0)) = 0.

Then our assertion amounts to the existence of an element z € O¢ with f(z) € pO¢.

Lemma implies that f(x) is a polynomial over O¢. In other words, we may write
f(x) = 2% + a2 ' +--- + ag with a; € Oc. Then by Lemma [2.1.10| in Chapter we
find elements ¢; € Op with a; — cg € pO¢. Since F' is algebraically closed, the polynomial
g(z) == 2%+ c1x9 1 4+ .- 4 ¢4 over OF has a root a in Or. Now we find

f@f) = (@ +ar()T 4+ tag

= (") + cji(ocﬁ)d_1 +-+ CEI mod pO¢

=+t 4.4 cd)tt mod pO¢

=g(a)f =
where the third identity follows from Proposition [2.1.9)in Chapter [[TI Hence we complete the
proof by taking z = of. O

Proposition 1.1.6. Fvery untilt of F is algebraically closed.

PROOF. Let C be an untilt of F', and let f(z) an arbitrary monic irreducible polynomial
of degree d over C. We wish to show that f(z) has a root in C. We may replace f(x) by
p"f(x/p™) for sufficiently large n to assume that f(z) is a polynomial over O¢. Let us set
Yo := 0 so that we have vo(f(yo)) = vo(f(0)) > 0. By Proposition we can inductively
construct a sequence (y,) in C' with

ve(Yn—1 — Yn) > (n — Dve(p)/d and ve(f(yn)) = nve(p) for each n > 1.

Then the sequence (y,) is Cauchy by construction, and thus converges to an element y € C.
Hence we find

F(y) = f (1im ya) = Tim f(ya) =0,
n—oo n—oo
thereby deducing the desired assertion. O
Remark. In order to avoid a circular reasoning, we should not deduce Proposition |1.1.6 as

a special case of the tilting equivalence for perfectoid fields as stated in Chapter [[, Theorem
2.2.3l In fact, the only known proof of the tilting equivalence (due to Scholze) is based on

Proposition [I.1.6]

Corollary 1.1.7. For every untilt C of I, the associated sharp map is surjective.
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We now aim to parametrize all untilts of F' by certain principal ideals of Ajys.

Definition 1.1.8. Let Cq and Cy be untilts of F' with continuous isomorphisms ¢q : F' >~ C?
and 1o : F' ~ Cg. We say that C; and Cy are equivalent if there exists a continuous isomorphism
Oy ~ Cy such that the induced isomorphism C} ~ C3 fits into the commutative diagram

CE : 3

L1 L2

F

Example 1.1.9. Corollary in Chapter [T implies that the trivial untilt of F' represents
a unique equivalence class of characteristic p untilts of F'.

Proposition 1.1.10. Let C' be a perfectoid field.

(1) Every continuous isomorphism F ~ C” induces an isomorphism Op |wOp ~ Oc /pOc
for some w € mp.

(2) Every isomorphism Op/wOfp ~ Oc¢/pOc for some w € mp uniquely lifts to a
continuous isomorphism F ~ C”.

PROOF. Let us first consider the statement We regard C' as an untilt of F' with the
given continuous isomorphism F ~ C”. Then Proposition in Chapter yields an
element @ € F with vp(w) = vo(p) > 0. Moreover, the continuous isomorphism F ~ C”
restricts to an isomorphism of valuation rings O ~ Og». Let us now consider the map

Or % Oc —— Oc/pOc

where the second arrow is the natural projection. This map is a ring homomorphism as
noted in Chapter [[TI] Proposition and is surjective by Lemma in Chapter [[II}
In addition, the kernel consists precisely of the elements ¢ € Op with vo(c?) > veo(p), or
equivalently vr(c) > vp(w). Hence we have an induced isomorphism O /@wOr ~ Oc/pOc
as asserted.

It remains to prove the statement Since F' is isomorphic to its tilt as noted in
Example 1.1.9, we have an identification Op = Opy = lim Op. Hence every isomorphism

xr—>$p

Or/wOr ~ Oc/pOc¢ for some w € mp uniquely gives rise to an isomorphism
OF = l&n (’)F/w(’)p ~ lin Oc/pOC = ch

TP T—axP
where the first and the third isomorphisms are given by Proposition [2.1.7in Chapter [[TI} and
in turn lifts to a continuous isomorphism F ~ C?. O

Definition 1.1.11. We say that an element & € Ajy¢ is primitive (of degree 1) if it has the
form ¢ = [w] — up for some w € mp and u € A ;. We say that a primitive element of Aj.s is
nondegenerate if it is not divisible by p.

Proposition 1.1.12. Let & be an element in Aine with the Teichmiiler expansion & = Z[cn]pn
(1) The element & is primitive if and only if we have vp(co) > 0 and vp(c1) = 0.

(2) If € is primitive, every unit multiple of & in Apg is primitive.

PROOF. The first statement is straightforward to verify by writing £ = [co]+p Z :l{fl

The second statement then follows by the explicit multiplication rule for Ajy¢.
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Proposition 1.1.13. Let £ be a nondegenerate primitive element in Ajns. The ring Aing/€ Aing
18 p-torsion free and p-adically complete.

ProOOF. We first verify that Aj,¢/§Ains is p-torsion free. Consider an element a € Ajyf
such that pa is divisible by £&. We wish to show that a is divisible by £. Let us write pa = £b
for some b € Ajys. Then we have b € pAjys since € has a nonzero image in A, /pAing = OF.
Therefore we may write b = pb’ for some b’ € A;,r and obtain an identity pa = p€b’, which in
turn yields a = &0 as desired.

Let us now prove that Ajns/Ains is p-adically complete. Denote by Ajns/€ Aine the p-adic
completion of Ajus/EAins. Since Ajys is p-adically complete, the projection Ajns — Aing/EAint
induces a surjective ring homomorphism

Ainf - Ainf/gAinf (12)

by a general fact as stated in [Stal Tag 0315]. It suffices to show that the kernel of this map
is £ Aine. Under the identification

Ainf/é.Ainf = @(Ainf/gAinf)/((pnAinf + gAinf)/EAinf) = @Ainf/(pnAinf + fAinf)

the map ((1.2)) coincides with the natural map
Ajnt — lim Ajne /(p" Aing + §Aing)-

n

oo
The kernel of this map is ﬂ (p" Ains +&Aing ), which clearly contains € Aj,¢. Hence we only need

n=1

(o] (o)
to show ﬂ (p" Aing + EAint) € EAins. Consider an arbitrary element u € ﬂ (p" Aing + & Aint).
n=1 n=1

Let us choose sequences (a,) and (b,) in Ay, with u = p™a, + &b, for each n > 1. Then
we have p™(a, — pant1) = &(bpt1 — by) for every n > 1. Since £ has a nonzero image in
Aing/pAint = Op, each by+1 — b, must be divisible by p™. Hence the sequence (b,,) converges
to an element b € A by the p-adic completeness of A;nr. As a result we find
u= lim (p"a, + &b,) = lim p"a, + & lim b, = &b,
n—oo n—oo n—oo
thereby completing the proof. O

Definition 1.1.14. For every primitive element £ € A;,¢, we refer to the natural projection
Oc : Aing — Aing/EAint as the untilt map associated to &.

Lemma 1.1.15. Let £ be a nondegenerate primitive element in Ajys.

(1) For every nonzero c € Op, some power of p is divisible by ¢([c]) in Aint/&Aint.
(2) For every m € mp, some power of O¢([m]) is divisible by p in Aing/EAint.

PROOF. Let us write £ = [w] — pu for some w € mp and u € A,. For every nonzero
c € O we may write @’ = cc for some i > 0 and ¢’ € Op, and consequently find

P = (Oe(u™)be(up))" = Oe(w) e ([w])" = O (u) ™0 ([c])0e ([€']).
Similarly, for every m € mp we may write m? = w - b for some j > 0 and b € Op, and
consequently find

Oe([m]) = b¢([0])0¢ ([b]) = O (pu)Be ([b]) = pbe (u)Oe ([b))-
We thus deduce the desired assertions. O
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Proposition 1.1.16. Let £ be a nondegenerate primitive element in Aine. Toke arbitrary
elements ¢, € Op. Then c divides ¢’ in Op if and only if O0¢([c]) divides 0¢([']) in Aint/&Aint -

PROOF. If ¢ divides ¢’ in Op, then 0¢([c]) divides 0¢([¢]) in Ains/EAins by the multiplica-
tivity of the Teichmiiller lift and the map 6. Let us now assume that c¢ does not divide
d in Op. We wish to show that 6¢([c]) does not divide O¢([¢]) in Aing/EAins. Suppose for
contradiction that there exists an element a € Ajine/EAins with 0¢([c']) = 0¢([c])a. Since we
have vp(c) > vp(c¢’) by assumption, there exists some m € mp with ¢ = mc’. We thus find

Oc([c]) = Oc([c])a = O¢([c])Oe([m])a. (1.3)

Moreover, ¢ is not zero as it is not divisible by ¢. Hence by Lemma we may write
" = 0 ([])b for some n > 0 and b € Ajys/EAins. Then by we find p" = p"O¢([m])a,
which in turn yields 6¢([m])a = 1 since p is not a zero divisor in Ajn¢/EAins by Proposition
m However, this is impossible because the image of 0¢([m]) under the natural map
Aing/EAing = Aint/(§Aing + pAing) is nilpotent by Lemma O

Proposition 1.1.17. Let £ be a nondegenerate primitive element in Aing. Everya € Aing /€ Aint
is a unit multiple of 6¢([c]) for some ¢ € OF, which is uniquely determined up to unit multiple.

PROOF. Let us first assume that a is a unit multiple of 6¢([c1]) and 6¢([co]) for some
c1,¢2 € Op. Then 6¢([c1]) and 6¢([c2]) divide each other. Hence Proposition [1.1.16| implies
that ¢; and co divide each other, which means that ¢; and ¢y are unit multiples of each other.

It remains to show that a is a unit multiple of 0¢([c]) for some ¢ € Op. We may assume
a # 0 as the assertion is obvious for a = 0. By Proposition [1.1.13| we can write a = p™a’ for
some n > 0 and a' € Ajpe/€Air such that @’ is not divisible by p. Let us write £ = [w] — up

for some w € mp and u € Amf Then we have

a=p'a = (Oc(u")0e(up))” a’ = O¢(u) " ¢ ([w])"a.
Hence we may replace a by a’ to assume that a is not divisible by p.
We have a natural isomorphism

Aint/(§Aint + pAint) = Aint/([@] Aint + pAint) = O /wOF.
In addition, the map 6 gives rise to a commutative diagram

B¢

Ainf » Ainf/gAinf
l i (1.4)
OF = Aing/pAing — Aint/(§Aint + pAint) 2 Op /wOp

where the surjectivity of the bottom middle arrow follows from the surjectivity of the other
arrows. Choose an element ¢ € Op whose image under the bottom middle arrow coincides
with the image of a under the second vertical arrow. Then ¢ is not divisible by w since a is
not divisible by p. Therefore we may write @ = ¢m for some m € mp and obtain

p = Oe(u™")b¢ (up) = O (u) ™ e ([]) = b¢(u) "0 ([e]) e ([m).-
Now the diagram yields an element b € A/ §Ainf with
a = 0¢([c]) + pb = Oc([c]) + b0e (u) " 0c([c])0e([m]) = Oc([¢]) (1 + bOe(u) " 0c([m])) -
We thus complete the proof by observing that 1+ b9§( )~ 195([ ]) is a unit in A /€ Ajps with
(1 + b0 (w) ™20 (fm])) ™" =1~ (b (u) "10c([m])) + (b0 ()~ 0 ([m]))”* — -

where the infinite sum converges by Proposition 3l and Lemma [1.1.15) [l
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Proposition 1.1.18. Let £ be a primitive element in Aine, and let C¢ denote the fraction
field of Aing/EAins. Then Cg¢ is an untilt of F' with the valuation ring Oc, = Aing/EAing and a

continuous isomorphism v : F' ~ Cg induced by the canonical isomorphism
Orp/@wOF = Ant/([@] Aint + PAint) = Aint/(§Aint + pAint) = Oc, /pC. (1.5)

where w denotes the image of £ under the natural map Aijng — Aing/pAins = Op. Moreover,
each element ¢ € Op maps to 0¢([c]) under the sharp map associated to Ce.

PROOF. Let us write & = [w] — up with w € mp and u € A ;. We also let O denote the

inf*
ring Aing/EAins. If @ is zero, then we have a natural isomorphism

O = A /EAins = Aine /pAins = O
which implies that C¢ represents the trivial untilt of F' as noted in Example We
henceforth assume w # 0.

We assert that O = Ajne/ Ajye is an integral domain. Suppose for contradiction that there
exist nonzero elements a,b € O with ab = 0. By Proposition we may write a = 0¢([c])u
for some nonzero ¢ € Op and v € O*. In addition, by Lemma we have 0¢([c])w = p"
for some n > 0 and w € O. Therefore we obtain an identity

0 = abw = O¢([c])wub = p"ub,
which yields a desired contradiction by Proposition [1.1.13

By Proposition we can define a nonnegative real-valued function v on O which
maps each y € O to vp(z) where z is an element in Op such that y is a unit multiple of
0¢([2]). Then by construction v is a multiplicative homomorphism whose image contains the
image of vp. In addition, for any yi,y2 € O* with v(y1) > v(y2) we find by Proposition
that 7 is divisible o in O, and consequently obtain

vy +y2) = v((y1/y2 + Dy2) = v(y1/y2 + 1) + v(y2) > v(y2) = min(v(y1), v(y2)).

Therefore we deduce that v is a nondiscrete valuation on O.

We can uniquely extend v to a valuation on C¢, which we also denote by v. For every
x € C¢ we write x = y1/y2 for some y1,y2 € O and find by Proposition that v(z) =
v(y1) — v(y2) is nonnegative if and only if y; is divisible by y, in O. Hence we deduce that O
is indeed the valuation ring of C¢.

Since the p-th power map is surjective on Op/wOp, it is also surjective on Oc, / pOc, by
the isomorphism . In addition, from the identity

p = Oe(u™")b¢ (up) = O (u) ' b¢([w])
we find v(p) = vrp(w) > 0. Hence C¢ has residue characteristic p. Furthermore, Proposition
implies that C¢ is complete with respect to the valuation v. Therefore we deduce that
Ck¢ is a perfectoid field.
By Proposition (and its proof) the isomorphism uniquely lifts to an isomor-
phism

O & lim Op/@wOp = lm At/ (§Aint + pAing) = lim Oc, /pOc, = lim Oc, = ch

r—xP r—xP TP P

where the first and the third isomorphisms are given by Proposition in Chapter [[TI} and
in turn lifts to a continuous isomorphism F' =~ C’g. Moreover, it is straightforward to verify

that each element ¢ € Op maps to (6¢([c!/?"]) € ch under the above isomorphism, and

consequently maps to ¢([c]) under the sharp map associated to C¢. Therefore we complete
the proof. O
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Proposition 1.1.19. Let C' be an untilt of F'.

(1) There exists a surjective ring homomorphism ¢ : Ajg — Oc with

Oc <Z[cn]p”) = chlp" for every ¢, € Op.
(2) Every primitive element in ker(6¢) generates ker(6¢).

PROOF. Since C is algebraically closed as noted in Proposition all results from the
first part of §2.2]in Chapter [[I]lremain valid with C in place of C. In particular, the statement
is merely a restatement of Proposition in Chapter Furthermore, Proposition m
in Chapter implies that ker(6¢) is generated by a primitive element &¢ := [pb] —p € At
where p” denotes an element in O with (pb)ﬁ =p.

Let us now consider an arbitrary primitive element { € ker(f¢). The map 6¢ induces a
surjective map 02 At /€At = O¢. Then ker(@}) is a non-maximal prime ideal as O¢ is

an integral domain but not a field. Moreover, ker(f¢) is a principal ideal generated by the

image of £c. Since Ajne/€ is a valuation ring by Proposition |1.1.18, we find ker(évg) =0 and
consequently deduce that £ generates ker(6¢). O

Remark. In the last sentence, we used an elementary fact that every nonzero principal prime
ideal of a valuation ring is maximal.

Definition 1.1.20. Given an untilt C of F', we refer to the ring homomorphism 8¢ constructed
in Proposition [1.1.19] as the untilt map of C.

Theorem 1.1.21 (Kedlaya-Liu [KL15|, Fontaine [Fon13]). There is a bijection

{ equivalence classes of untilts of F'} — { ideals of At generated by a primitive element }

which maps each untilt C of F' to ker(6c).

PrOOF. We first verify that the association is surjective. Consider an arbitrary primitive
element £ € Aj,;. By Proposition it gives rise to an untilt C¢ of F' such that each
c € O maps to 6¢([c]) under the associated sharp map. Hence Lemma from Chapter
implies that the maps ¢ and 0¢, coincide, thereby yielding § Ay = ker(0¢) = ker(fc, ).

It remains to show that the association is injective. Let C be an arbitrary untilt of F'
with a continuous isomorphism ¢ : F ~ C”. Choose a primitive element w € ker(f¢), which
gives rise to an untilt C,, of F' with a continuous isomorphism ¢, : F' =~ C’f) by Proposition
[[.I.18 It suffices to show that C' and C,, are equivalent. The map ¢ induces an isomorphism
Oc,, = Aint/wAins ~ O¢, which extends to an isomorphism C,, ~ C. Let f denote the induced
map C? ~ C”. Then by Proposition and Proposition the map f o, yields an

isomorphism
Or /wOF = Aiyt/(pAint + wAing) = Oc,, /pOc,, ~ Oc/pOc (1.6)

where w denotes the image of w in Ay¢/pAins = Op. For every ¢ € Op, this isomorphism
maps the image of ¢ in Op/wOF to the image of O¢([c]) = ¢! in O¢/pOc. This implies that
an element ¢ € O is divisible by w if and only if ¢f is divisible by p, and consequently yields
vr(w) = vo(p). Then the proof of Proposition shows that the isomorphism is
also induced by ¢. Therefore the second part of Proposition yields f o, = ¢, which
means that C' and C,, are equivalent as desired. O

Remark. The first paragraph of our proof shows that there is no conflict between Definition

[LT.14] and Definition [[L1.200
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1.2. The schematic Fargues-Fontaine curve

The main goal of this subsection is to describe the construction of the Fargues-Fontaine
curve as a scheme. For the rest of this chapter, we fix a nonzero element w € mp. We also
denote by Yr =Y the set of equivalence classes of characteristic 0 untilts of F'.

Definition 1.2.1. Let C be an untilt of F'. We define the associated absolute value on C by
|z|o = p e for every x € C,

and write |C| := {|z|-:2 € C'} for the associated absolute value group. If C' = F is the
trivial untilt of F', we often drop the subscript to ease the notation.

Remark. Thus far we have been using valuations to describe the topology on valued fields,
because valuations are convenient for topological arguments involving algebraic objects such
as p-adic representations and period rings. From now on, we will use absolute values to
describe the topology on perfectoid fields, because the objects of our interest will be very
much analytic in nature.

Example 1.2.2. Let C be an untilt of F. Theorem [I.1.2]] yields a primitive element € Ajy¢

which generates ker(6¢). If we write & = [m] — up for some m € mp and u € A, we have

ple = [be ()~ 0c(mD)] ¢ = 16c((m)lc = [mé| = tml
Proposition 1.2.3. We have an identification

Ae[1/p,1/[]] = { S [ealp™ € W(F)[1/p] ¢ leal bounded} .

In particular, the ring Aine[1/p,1/[w]] does not depend on our choice of w.

PROOF. Consider an arbitrary element f =  [c,]p" € W(F)[1/p]. Then we have f €
Aing[1/p,1/[w]] if and only if there exists some i > 0 with [@']f = Y [c,w@’]p" € Aine[1/p], or
equivalently |c,| < }w_’“ for all n. O

Definition 1.2.4. Let y be an element of Y, represented by an untilt C' of F'.

(1) We define the absolute value of y by |y| := |p|o-
(2) For every f = > [cn|p™ € Awnt[l/p, 1/[w]] we define its value at y by

fly)=0c(f) = cdp"

where ¢ : Aine[1/p, 1/[w]] — C'is the ring homomorphism which extends the untilt
map O¢ : Ar — O¢.

Remark. A useful heuristic idea for understanding the construction and the structure of the
Fargues-Fontaine curve is that the set Y behaves in many aspects as the punctured unit disk
D* .= {2€C:0<|z|] <1} in the complex plane. Here we present a couple of analogies
between Y and D*.

(1) For each y € Y represented by an untilt C of F, its absolute value |y| = [p| is a real
number between 0 and 1. This is an analogue of the fact that every element z € D*
has an absolute value between 0 and 1.

(2) Every element in Aj¢[1/p, 1/[w]] is a “Laurent series in the variable p” with bounded
coefficients, and gives rise to a function on Y as described in Definition This
is an analogue of the fact that every Laurent series ) a,2" over C with bounded
coefficients defines a holomorphic function on D*.
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Lemma 1.2.5. Let f = [c,]p™ be a nonzero element in Aiye[1/p, 1/[w]], and let p be a real

number with 0 < p < 1. Then sup(|c,| p") exists and is attained by finitely many values of n.
neZ

PROOF. Let us take an integer ng with ¢,, # 0. Proposition [I.2.3] implies that there
exists an integer [ > 0 with |c,| p"™ < |cp,| p"° for all n > [. In addition, there exists an integer
k < 0 with ¢, = 0 for all n < k. Therefore sup(|c,|p") = sup (|cn|p™) exists and can only

neZ <n<l
be attained by an integer n with k <n <. g
Definition 1.2.6. Let p be a real number with 0 < p < 1.

(1) We define the Gauss p-norm on Aiu¢[1/p,1/[w]] by
’Z[cn]p”) i= sup(|cn| p").
P nez

(2) Given an element f = > [c,]p" € Aint[1l/p,1/[w]], we say that p is generic for f if
there exists a unique n € Z with [f|, = [c,| p".
Lemma 1.2.7. Let f be an element in Ain¢[l/p, 1/[w]]. The set
Sy:={pe(0,1):p is generic for f }

is dense in the interval (0,1).

PRrOOF. If p € (0,1) is not generic for f, then by Lemma there exist some distinct
integers m and n with |f|, = [em|p™ = |en| p", which yields p = (|ep| / len )Y (=) We thus
deduce that the complement of Sy in (0, 1) is countable, thereby obtaining the assertion. [

Lemma 1.2.8. Let y be an element in Y represented by an untilt C of F'. For every f €
Aint[1/p, 1/[w]] we have |f(y)lc < |l with equality if |y| is generic for f.

PROOF. Let us write f = ) [c,|p" with ¢, € F. Then we have

g c sup | |c sup (|c .
fW)le ‘ nP| = HEIZ) ap ple nEIZ)(‘ nl - yl™) ’f“y|
It is evident that the inequality above becomes an equality if |y| is generic for f. g

Proposition 1.2.9. For every positive real number p < 1, the Gauss p-norm on Aine[1/p, 1/[w]]
1s @ multiplicative norm.

PROOF. Let f and g be arbitrary elements in Ajn¢[1/p, 1/[w]]. We wish to show
f +9l, <max(|f|,.]9l,)  and  [fgl,=I|f],ldl,-
Since |F| is dense in the set of nonnegative real numbers, Lemma implies that the set
S:={7€(0,1)N|F|: T is generic for f,g,f+ g, and fg}
is dense in the interval (0,1). Hence we write p = nlgrolo Ty, for some (7;,) in S to assume p € S.

Take an element ¢ € mp with |c¢| = p. Then & := [¢] —p € Ajyr is a nondegenerate primitive
element, and thus gives rise to an element y € Y with |y| = p by Proposition |1.1.13] Theorem
1.1.21} and Example Then by Lemma we find

\f+9l,=1fW) +9Wlc <max([f(y)lc.|9(y)lc) = max(|f],.|g],),
1fal, =1fW9Wle = 1fWlc @)l = 111,191,

Therefore we complete the proof. O
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Definition 1.2.10. Let [a, b] be a closed subinterval of (0,1). We write
Yoy ={y€Y :a<|y <b},

and define the ring of holomorphic functions on Y}, y), denoted by By, ), to be the completion
of Aine[1/p,1/[w]] with respect to the Gauss a-norm and the Gauss b-norm.

Lemma 1.2.11. Let [a,b] be a closed subinterval of (0,1), and let f be an element in
Ain[1/p, 1/[w]]. We have |f|, < sup(|fl,,|f],) for all p € [a,b].

PROOF. Let us write f = Y [¢,]p™ for some ¢, € F. Then we have

len| p™ < en| 0" < | f], for all n > 0,
leal " < len]a™ < |, for all n < 0.
Hence we deduce the desired assertion. O

Remark. Since |F| is dense in (0,00), we find sup (|f(y)|c) = |f], for all p € |[F|N(0,1) by

ly|=
Lemma [1.2.7) and Lemma [1.2.8] Hence we may regard Lemma [1.2.11] as an analogue of the
maximum modulus principle for holomorphic functions on D*.

Proposition 1.2.12. Let [a,b] be a closed subinterval of (0,1). The ring B,y is the com-
pletion of Aint[1/p,1/[w]] with respect to all Gauss p-norms with p € |a,b].

PROOF. Lemma [1.2.11| implies that a sequence (fy,) in Ajn[l/p,1/[w]] is Cauchy with
respect to the Gauss a-norm and the Gauss b-norm if and only if it is Cauchy with respect to
the Gauss p-norm for all p € [a, b]. O
Corollary 1.2.13. For any a,b,a’,b" € R with [a,b] C [a’,b'] C (0,1), we have By y) € Biq -
Definition 1.2.14. We define the ring of holomorphic functions on 'Y by

Bp = @1 By
where the transition maps are the natural inclusions given by Corollary[1.2.13] We often write

B instead of Br to ease the notation.

Remark. It is not hard to see that a formal sum »_[c,|p™ with ¢, € F converges in B if and
only if it satisfies

limsup |e, |V < 1 and lim |e_n|Y/™ = 0.
n>0 n—oo
This is an analogue of the fact that a Laurent series ) a,2" over C converges on D* if and
only if it satisfies

limsup |a,|"/" < 1 and lim |a_,|"™ = 0.
n>0 n—oo

However, an arbitrary element in B may not admit a unique “Laurent series expansion” in p,
whereas every holomorphic function on D* admits a unique Laurent series expansion.

Lemma 1.2.15. Let n: Ry — Ra be a continuous homomorphism of normed rings.

(1) The map n uniquely extends to a continuous ring homomorphism 7 : fz\l — ]/%\2
where Ry and Ro respectively denote the completions of R1 and Ro.
(2) The homomorphism 1 is a homeomorphism if 1 is a homeomorphism.

PrOOF. This is an immediate consequence of an elementary fact from analysis. O
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Proposition 1.2.16. Let C be a characteristic 0 untilt of F'. The untilt map 0c uniquely
extends to a surjective continuous open ring homomorphism 0o : B — C.

PrOOF. The map 6 uniquely extends to a surjective ring homomorphism
Oc : Aint[1/p,1/[w]] = Oc[1/p] = C.

Let us set p := [p|. Then éE uniquely extends to a surjective continuous ring homomorphism

—

bc : By, — C by Lemma |1.2.8) and Lemma (1.2.15. Moreover, 55 is open by the open

mapping theorem. Take 5(\; to be the restriction of 55 on B. By construction 55 is a surjective
continuous open map which extends f¢. Since the uniqueness is evident by the continuity, we
deduce the desired assertion. O

Definition 1.2.17. Let y be an element in Y, represented by an untilt C of F.
(1) We refer to the map 55 given by Proposition |1.2.16| as the evaluation map at y.
(2) For every f € B, we define its value at y by f(y) := ég(f)

Proposition 1.2.18. The Frobenius automorphism of F uniquely lifts to a continuous auto-
morphism ¢ on B.

PROOF. Let ¢ denote the Frobenius automorphism of W (F'). By construction we have

OF (Z[cn]pn) = Z[cﬁ]pn for all ¢, € F. (1.7)

Then Proposition implies that @ restricts to an automorphism on A;u¢[l/p, 1/[w]].
Moreover, by (1.7]) we find

[6E()le =117 for all f € Ain[1/p,1/[w]] and p € (0,1). (1.8)

Consider an arbitrary closed interval [a,b] C (0,1), and choose a real number r € [a, b]. By

Lemma and the map ¢ on Aiy¢[1/p, 1/[w]] uniquely extends to a continuous ring
isomorphism @) © Bj,;] =~ Bp 0. In addition, the identity implies that a sequence
(fn) in Aing[1/p,1/[w]] is Cauchy with respect to the Gauss a-norm and the Gauss b-norm if
and only if the sequence (pg(fy,)) is Cauchy with respect to the Gauss aP-norm and the Gauss
bP-norm. Since @ is bijective, we deduce that ¥1r,r) Testricts to a continuous ring isomorphism

Plab] * Blap) = Blar pr] With an inverse given by the restriction of cp[;lr] on B pp). It is evident
by construction that ¢, is an extension of OF.
By our discussion in the preceding paragraph, the map ¢ on Ajn¢[1/p, 1/[w]] extends to
a continuous isomorphism
p:B= liﬂlB[a,b] ~ @B[ap,bp} = B.
Moreover, the uniqueness of ¢ is evident by the continuity. Therefore we obtain the desired
assertion. O

Definition 1.2.19. We refer to the map ¢ constructed in Proposition [1.2.18| as the Frobenius
automorphism of B, and define the schematic Fargues-Fontaine curve as the scheme

Xp :=Proj | @ B*""
n>0

We often simply write X instead of Xp to ease the notation.
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1.3. The adic Fargues-Fontaine curve

In this subsection, we describe another incarnation of the Fargues-Fontaine curve using
the language of adic spaces developed by Huber in [Hub93| and [Hub94|. Our goal for
this subsection is twofold: introducing a new perspective for the construction of the Fargues-
Fontaine curve, and providing an exposition on some related theories. Our discussion will be
cursory, as we won’t use any results from this section in the subsequent sections.

Definition 1.3.1. Let R be a topological ring.
(1) We say that a subset S of R is bounded if for every open neighborhood U of 0 there
exists an open neighborhood V of 0 with V.S C U.

(2) We say that an element f € R is power-bounded if the set { f :n >0} is bounded,
and denote by R° the subring of power-bounded elements in R.

(3) We say that R is a Huber ring if there exists an open subring Ry, called a ring of
definition, on which the induced topology is generated by a finitely generated ideal.

(4) If R is a Huber ring, we say that R is uniform if R° is a ring of definition.
Example 1.3.2. We present some important examples of uniform Huber rings.
(1) Every ring R with the discrete topology is a uniform Huber ring with R° = R, as its
topology is generated by the zero ideal.

(2) Every nonarchimedean field L is a uniform Huber ring with L° = Oy, as the topology
on Oy is generated by the ideal mOy, for any m in the maximal ideal.

(3) The ring Ajuf is a uniform Huber ring with A? ; = Ajnr and the topology generated
by the ideal pAins + []Ajnt-
Definition 1.3.3. A Huber pair is a pair (R, R") which consists of a Huber ring R and its
open and integrally closed subring Rt C R°.
Proposition 1.3.4. For every Huber ring R, the subring R° is open and integrally closed.

Definition 1.3.5. Let R be a topological ring.

(1) Amap v : R — T U {0} for some totally ordered abelian group 7' is called a

continuous multiplicative valuation if it satisfies the following properties:

(i) v(0) =0 and v(1) = 1.

(ii) For all r,s € R we have v(rs) = v(r)v(s) and v(r + s) < max(v(r), v(s)).
(iii) For every 7 € T'the set {r € R:v(r) <7 } is open in R.

(2) We say that two continuous multiplicative valuations v and w on R are equivalent if
there exists an isomorphism of totally ordered monoids ¢ : v(R)U{ 0} ~ w(R)U{ 0}
with d(v(r)) = w(r) for all r € R.

(3) We define the valuation spectrum of R, denoted by Spv(R), to be the set of equiva-
lence classes of continuous multiplicative valuations on R.

(4) Given r € R and = € Spv(R), we define the value of r at x by |r(z)| := v(r) where v
is any representative of x.

Remark. Our terminology in slightly modifies Huber’s original terminology continuous
valuation in order to avoid any potential confusion after extensively using the term valuation
in the additive notation.

Proposition 1.3.6. Let v and w be continuous multiplicative valuations on a topological ring
R. Then v and w are equivalent if and only if for all ;s € R the inequality v(r) < v(s)
amounts to the inequality w(r) < w(s).
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Definition 1.3.7. For a Huber pair (R, R™), we define its adic spectrum by
Spa(R,R") :={z € Spv(R) : |f(z)| < 1forall feR"}
endowed with the topology generated by subsets of the form

U(f/g):={ = €Spa(RRY): |f(x)| < lglx)| #0}  for some f.g € R.
Example 1.3.8. We are particularly interested in the set

Y= Spa(Ainfa mf)\{aj € Spa(Ainfa 1nf) |p[ ]( )| = 0},

which we call the perfectoid punctured unit disk. Let us describe two types of points on Y.

Let y be an element in Y, represented by an untilt C' of F'. Consider a nonnegative real
valued function v, on Ajys defined by vy, (f) := |f(¥)|c = |0c(f)|o for every f € A, It is
evident by construction that v, is a continuous multiplicative valuation on Ajys with vy (f) <1
for all f € Ajys. In addition, we have vy (p) = |p|o # 0 and vy ([w]) = |w| # 0. Hence v, gives
rise to a point in ), which we denote by .

Let p be a real number with 0 < p < 1. By Proposition [1.2.9 the Gauss p-norm on
Aint[1/p, 1/[w]] restricts to a continuous multiplicative valuation on Ajy¢ with [f|, <1 for all
f € Aine. In addition, we have |p|, = p # 0 and [[w]|, = |w| # 0. Hence the Gauss p-norm
on Aine[1/p,1/[w]] gives rise to a point in ), which we denote by ~,.

Remark. Interested readers may find some informative illustrations of Spa(Aipnf, Ainf) and Y
in Scholze’s Berkeley lectures [SW20), §12].

Definition 1.3.9. Let (R, R") be a Huber pair. A rational subset of Spa(R, R") is a subset
of the form

UT/g) = { x € Spa(R,RT) : |f(z)] < |g(x)] # 0 for all f € T}
for some g € R and some nonempty finite set 7' C R such that TR is open in R.
Example 1.3.10. We say that a subset of ) is distinguished if it has the form
Viwljwp) = {2 €V [[@'](2)] < Ip(@)] < |[=](2)] }

for some ,j € Z[1/p] with 0 < j < i. Every distinguished subset of ) is a rational subset of
Spa(Aing, Aing); indeed, we have an identification

y“wv lwli] = {x € Spa(AinfyAinf) : HWH_] T ‘ ) ‘p (l’)‘ < Hwﬂp(x)! #0 } - U(T[i,j}/[wj]p)

where T; j := { [@'7],p? } generates an open ideal in A;y¢. In particular, every distinguished
subset of ) is open in Spa(Aiut, Ainf)-

Let us describe some points on each yH - in line with our discussion in Example
For an element y € Y, we have y € y[|w| o] if and only if y is an element of Y; (1t )]
For a real number p with 0 < p < 1, we have v, € y i ] if and only if p belongs to the

interval [|w|’, |w|’].
Remark. We can extend our discussion above by defining the absolute value for an arbitrary
point x € Y. We say that a valuation is of rank 1 if it takes values in the set of positive real

numbers. It is a fact that  admits a unique maximal generization £™#* of rank 1. We define
the absolute value of x by

log(|p(«™3%)])

|x’ = ‘w|10g(\[w](wmax)\) .
Let us now consider N of Y for some i,j € Z[1/p]. Since Vijwli o] 18 OPen in
Spa(Aint, Aing) as noted above, the point z lies in wa'i ()] if and only if 2™®* does, which

amounts to having |z| € [|w|*, |w=]’].
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Proposition 1.3.11. Let (R, R") be a Huber pair, and write S := Spa(R, Rt). Consider a
rational subset U := U(T'/g) for some g € R and some nonempty finite set T C R such that
TR is open in R.
(1) There exists a map of Huber pairs (R, R") — (Os(U), 0% (U)) for some complete
Huber ring Os(U) with the following properties:
(i) The induced map Spa(Os(U), OL(U)) — S yields a homeomorphism onto U.
(ii) It is universal for maps of Huber pairs (R,R*) — (Q, Q") such that the in-
duced map Spa(Q, Q1) — S factors over U.

(2) If R is uniform such that the topology on R° is given by a finitely generated ideal I,
then Os(U) is given by the completion of R[1/g] with respect to the ideal generated
by I and the set T':={ f/g: fe€T}.

Definition 1.3.12. Let (R, R") be a Huber pair, and write S := Spa(R, R"). We define the
presheaves Og and (’)}' on S by

Os(W):= lim Osld) and ofW) = lim OfMU) for all open WC S

Ucw Uucw
U rational U rational

where Og(U) and O (U) for each rational subset U of S are given by Proposition [1.3.11] We
refer to Og as the structure presheaf of S.

Remark. The ring O (W) is in general not open in Og(W).

Example 1.3.13. Let us write S := Spa(Ajyuf, Aing). We assert that ) is an open subset
of § with Og()) = B. The set ) is covered by the distinguished subsets; indeed, as both
[ew] and p are topologically nilpotent in Ajuf, for every x € ) there exist some positive
real numbers i,j € Z[1/p] with le](:r)‘ < |p(z)| and |p1/j(x)} < |[ew](x)|, or equivalently
sz](:pﬂ < |p(z)] < ij](x)} Since distinguished subsets of ) are (open) rational subsets of
S as noted in Example we deduce that ) is an open subset of S with

Os(Y) = lim Os(V )i |op)) (1.9)
where the limit is taken over all distinguished subsets of ).

Consider arbitrary numbers i,j € Z[1/p] with 0 < 7 < i. In light of (1.9) it suffices to
establish an identification

Os(y[\w\i,lwlj}) = B[|w|i,\w|j]‘ (1.10)

Proposition and Example together imply that Og (y[‘w‘i7|w| j}) is the gompletiog of
Aing[1/p, 1/[w]] with respect to the ideal I generated by the set T':= { p, [@], [@']/p, p/[=’] }.
Moreover, the ideal I is generated by [w']/p and p/[w’] as we have p = (p/[w’]) - [=’] and
(@] = ([@]/p)" - p" - (1/[w])* for some positive integers r and s. It is then straightforward to
verify that the I-adic topology on Ajn¢[1/p, 1/[w]] coincides with the topology induced by the
Gauss |w|"-norm and the Gauss |w|’-norm. Therefore we obtain the identification as
desired.

Definition 1.3.14. We say that a Huber pair (R, R") is sheafy if the structure presheaf on
Spa(R, RT) is a sheaf.

Proposition 1.3.15. Let (R, R") be a Huber pair, and write S := Spa(R, R").
(1) For every open W C S we have
OfW)={feOsW):|f(z)| <1 forallzeW}.
(2) The presheaf O; is a sheaf if (R, R") is sheafy.
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Definition 1.3.16. Let R be a Huber ring.

(1) We say that R is Tate if it contains a topologically nilpotent unit.
(2) We say that R is strongly noetherian if for every n > 0 the Tate algebra

Rluy, -+ un) = { > @iy gy uly € Rl[un, - up] s limag, g, = 0}

is noetherian.

Theorem 1.3.17 (Huber [Hub94]). A Huber pair (R, R") is sheafy if R is Tate and strongly
noetherian.

Theorem 1.3.18 (Kedlaya [Ked16]). For every closed interval [a,b] C (0,1) the topological
ring Blqy s a Tate and strongly noetherian Huber ring.

Definition 1.3.19. An adic space is a topological space S together with a sheaf Og of
topological rings and a continuous multiplicative valuation v, on Os, for each x € § such
that S is locally of the form Spa(R, R™) for some sheafy Huber pair (R, RT).

Example 1.3.20. By Example [1.3.13] Theorem [1.3.17| and Theorem [1.3.18| we deduce that
distinguished subsets of ) are noetherian adic spaces, and in turn find that ) is a locally
noetherian adic space. In addition, for every closed interval [a,b] C (0,1) we see that

Vo= U Veep)
(lewl*,|=|’]Ca,b]
is a locally noetherian adic space with Oy, Viap) = Blay-
Proposition 1.3.21. Every morphism of Huber pairs g : (R, RY) — (Q, Q™) induces a map
of presheaves Og — g.O7 where we write S := Spa(R, RT) and T := Spa(Q, Q™).

Example 1.3.22. Let ¢ denote the automorphism of Spa(Ajy¢, Aing) induced by the Frobenius
automorphism of Aj.¢. It is evident by construction that ) is stable under ¢. In addition,

by Example [1.3.13| and Proposition [1.3.21| we get an induced automorphism on Oy()) = B
which is easily seen to coincide with (.

Let us choose ¢ € (1/p,p) N Q. For every n € Z, we set
Vii= Voprior ey a0d - Wai= Ve | jegms)-

Arguing as in Example [1.3.13] we find that ) is covered by such sets. In addition, we have
d(Vn) = Vp—1 and ¢(W,,) = Wy, for all n € Z. Therefore the action of ¢ on ) is properly
discontinuous, and consequently yields the quotient space

X = Y/¢r.
Moreover, X is covered by (the isomorphic images of) Vy and Wy, which are noetherian adic
spaces as noted in Example [1.3.20 Hence X is a noetherian adic space with Oy (X) = B¥=1L.

Definition 1.3.23. We refer to the noetherian adic space X constructed in Example [1.3.22
as the adic Fargues-Fontaine curve.

Theorem 1.3.24 (Kedlaya-Liu [KL15]). There ezists a natural morphism of locally ringed
spaces h : X — X such that the pullback along h induces an equivalence

h* : Buny — Buny
where Bunx and Buny respectively denote the categories of vector bundles on X and X.

Remark. Theorem is often referred to as “GAGA for the Fargues-Fontaine curve”.
By Theorem studying the schematic Fargues-Fontaine curve is essentially equivalent
to studying the adic Fargues-Fontaine curve.
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2. Geometric structure

In this section we establish some fundamental geometric properties of the Fargues-Fontaine
curve. Our discussion will show that the Fargues-Fontaine curve is geometrically very akin to
proper curves over Q. In addition, our discussion will provide a number of new perspectives
towards several constructions from Chapter [[Ill The primary references for this section are
Fargues and Fontaine’s survey paper [FF12] and Lurie’s notes [Lur]

2.1. Legendre-Newton polygons

We begin by introducing a crucial tool for studying the structure of the ring B.
Definition 2.1.1. Let log, denote the real logarithm base p.

(1) Given an element f € B, we define the Legendre-Newton polygon of f as the function
Lys:(0,00) — RU{ 0o} given by
Ly(s) = —log, (]f|p,s> for all s € (0, 00).

(2) Given a closed interval [a,b] € (0,1) and an element f € By, we define the
Legendre-Newton [a, b]-polygon of f as the function Ly (44 : [ 1og,(b), —log,(a)] —
RU{ oo} given by

Lppay(s) == —log, (| f\p,s) for all s € [~ log, (), —log,(a)].

Remark. With notations as in Example we may write Ly(s) = —log, (| f(vp-s)|) for
all f € B and s € (0, 00).
Lemma 2.1.2. Given any elements f,g € Aine[1/p,1/[w]], we have
Lig(s) =Lys(s)+Ly(s) and Lyyg(s) >min(Ls(s),Ly(s)) for all s € (0,00).
PRroOOF. This is an immediate consequence of Proposition [1.2.9 O

Our main goal in this subsection is to prove that Legendre-Newton polygons are indeed
polygons with decreasing integer slopes.

Definition 2.1.3. Let g be a piecewise linear function defined on an interval I C R.

(1) We say that g is concave if the slopes are decreasing, and convez if the slopes are
increasing.
(2) We write 0_g and 04g respectively for the left and right derivatives of g.

Example 2.1.4. Let f = > [c,]p™ be a nonzero element in Ay ¢[1/p,1/[w]]. Its Newton
polygon is defined as the lower convex hull the points (n,vr(c,)) € R?, which we may regard
as a convex piecewise linear function on (0, c0).

Lemma 2.1.5. Given a nonzero element f = [cy]p™ € Aint[1/p, 1/[w]], we have
Ls(s) = in%(z/p(cn) + ns) for every s € (0, 00).
ne

Proor. This is obvious by definition. O

Remark. By Lemma 2.1.5: it is not hard to verify that L coincides with the Legendre
transform of the Newton polygon of f.

Example 2.1.6. Let £ be a primitive element in Aj,s with the Teichmiiller expansion £ =
> [en]p™. By Proposition [1.1.12 we have

Le(s) = min(vp(co),vr(c1) + s) = min(ve(co), s) for all s € (0, 00).
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Proposition 2.1.7. Let f = > [c,] be a nonzero element in Aye[1/p,1/[w]].

(1) Ly is a concave piecewise linear function with integer slopes.
(2) For each s € (0,00), the one-sided derivatives 0_Ly(s) and 0+ L¢(s) are respectively
given by the minimum and maximum elements of the set
Ts:={neZ:Lss)=vr(cn) +ns}.

Proor. Fix a real number s > 0. Lemma and Lemma together imply that
Ts is finite. Let [ and r respectively denote the minimum and maximum elements of Ts. By
construction we have

vi(a)+ls=vp(e) +1s <vp(e,) +ns for all n € Z (2.1)
where equality holds if and only if n belongs to T5. It suffices to show that for all sufficiently
small € > 0 we have

Li(s+e)=Lys(s)+le and Li(s—€)=Lys(s)—re. (2.2)
Let us consider the first identity in . Take k£ < 0 with ¢, = 0 for all n < k, and set
((VF(Cn) +ns) — (ve(a) + ls)> _ inf <(VF(Cn) +ns) — (ve(e) + ls)> ‘

01 := inf
! e l—n k<n<l l—n

n<l
Then we have §; > 0 as the inequality in (2.1)) is strict for all n < [. Let € be a real number
with 0 < € < d1. For every n <[ we find €(l —n) < 51(l — n) < (vp(cn) + ns) — (vr(a) + 1s)
and consequently obtain

vr(c) +1U(s+e€) <vp(en) +n(s+e).
In addition, for every n > [ we have
vi(a) +1(s+e€) <vp(en) +ns+le <vp(en) +n(s +e€)
where the first inequality follows from . Therefore we obtain
Li(s+e) = Tllrelg(yp(cn) +n(s+e€) =vr(c)+i(s+e)=Lys(s)+ e

We now consider the second identity in (2.2). Proposition implies that there exists
A € R with vp(e,) > A for all n € Z. Let us set
vi(cr) — A 5y <(1/F(cn) +ns) — (vr(er) + 7"5)>

u::T-i-r and ::T<12£u P

Then we have 9 > 0 as the inequality in (2.1)) is strict for all n > r. Let € be a real number
with 0 < € < min(s/2,d2). For every n > u we find

vi(cr) —vp(en) <ve(e) —A=(u—r1)s/2 < (n—r)(s—¢)
and consequently obtain
vi(er) +1(s—€) <vp(en) +n(s —e).

In addition, we get the same inequality for every m < r by arguing as in the preceding
paragraph. Therefore we deduce

Li(s—e€)= iIelg(VF(Cn) +n(s—¢€) =vp(c,) +r(s—¢€) = Ls(s) —re,
thereby completing the proof. O

Remark. In light of the remark after Lemma [2.1.5] we can alternatively deduce Proposition
from a general fact that the Legendre transform of a convex piecewise linear function
with integer breakpoints is a concave piecewise linear function with integer slopes.
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Lemma 2.1.8. Let (f,) be a Cauchy sequence in Ape[l/p, 1/[w]] with respect to the Gauss
p~%-norm for some s > 0. Assume that (f,) does not converge to 0. Then the sequences
(Ls,(5)), (0-Ly,(s)), and (0+Ly,(s)) are all eventually constant.

ProOF. The sequence (| fn|p,s> converges in R. Let us set

a:= lim Ly (s) = —nli_)r{.lologp (]fn|p_s) ,

n—oo

and take an integer u > 0 with
Ly, —p,(s) =—log, <|fn - fu]p_s) > 2a and Ly, (s) < 2a for all n > w.
For every m > u, since both L, and Ly, _;, are continuous, we may find some 4, > 0 with
Lf—t.(s+€>2a>Ly (s+e€) for all € € (=6, dn),

and consequently obtain L (s +¢€) = Ly, (s +€) for all € € (=4,,6,) by Lemma This
implies that for every n > u we have

ﬁfn(s) = ﬁfu(8)7 8_£fn(8) = a_ﬁfu (8)7 a+£fn (S) = 8+£,fu(s)
Hence we deduce the desired assertion. O

Proposition 2.1.9. Let [a,b] be a closed subinterval of (0,1), and let (fn) be a Cauchy
sequence in Aing[1/p, 1/[w]] with respect to the Gauss a-norm and the Gauss b-norm. Assume
that (f,) does not converge to 0 with respect to either the Gauss a-norm or the Gauss b-norm.
Then the sequence of functions (Ly, ) is eventually constant on [—log,(b), —log,(a)].

PROOF. Let us write [ := —log,(b) and r := —log,(a). Without loss of generality we may
assume that each f, is not zero. In addition, by symmetry we may assume that f, does not
converge to 0 with respect to the Gauss b-norm. Then Lemmal[2.1.8|yields «, 8 € R and u € Z
such that we have Ly, (I) = a and 0, Ly, (I) = 8 for all n > u. Since each Ly, is concave and
piecewise linear by Proposition we set w := max(a, a + B(r —[)) and find

Li(s)<a+p(s—1)<w for all n > w and s € [I,r]. (2.3)

Moreover, Lemma [1.2.11| (or Proposition [1.2.12]) implies that the sequence (f,) converges
with respect to all Gauss p-norms with p € [a,b], thereby yielding an integer «' > u with

| fro — furl , <p ¥ foralln> u' and p € [a,b], or equivalently
Ly, r,(8)>w for all n > v’ and s € [I,7].

Hence by Lemma and (2.3) we find
Ly, (s)= Ly, (s) for all n > v’ and s € [I,7].
thereby deducing the desired assertion. O

Proposition 2.1.10. Let [a,b] be a closed subinterval of (0,1). For every nonzero f € Biqy,
the function Ly 4y is concave and piecewise linear with integer slopes.

PROOF. Take a sequence (f,,) in Ajn¢[1/p, 1/[w]] which converges to f with respect to the
Gauss a-norm and the Gauss b-norm. By Proposition [1.2.12| we have

Liap(s) = lim Ly, (s) for all s € [—1log,(b), —log,(a)].

Since f is not zero, the assertion follows by Proposition [2.1.7] an Proposition [2.1.9 U
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Remark. For a holomorphic function g on the annulus D, := {z€C:a<|z| <b}, the
Hadamard three-circle theorem asserts that the function M, : [In(a),In(b)] — R defined by
My(r) == ln( sup (|g(z)|)> for all r € [In(a),In(b)] is convex. In light of the remark after

|z|=er

Lemmal|l.2.11)we may consider Proposition[2.1.10|as an analogue of the Hadamard three-circle
theorem.

Corollary 2.1.11. For every nonzero f € B, the Legendre-Newton polygon Ly is a concave
piecewise linear function with integer slopes.

Remark. Corollary [2.1.11] suggests that we can define the Newton polygon of f as the Le-
gendre transform of L.

Example 2.1.12. Let f be an invertible element in B. By Lemma we find
Ly(s) =L1(s) = Ly-1(s) =—Lp1(s) for all s € (0, 00).

Since both Ly and L;-1 are concave piecewise linear functions as noted in Corollary [2.1.11
we deduce that Ly is linear.

Remark. In fact, it is not hard to prove that a nonzero element f € B is invertible if and
only if Ly is linear.

Let us present some important applications of the Legendre-Newton polygons.

Definition 2.1.13. For every n € Z, we refer to the ring B#=P" as the Frobenius eigenspace
of B with eigenvalue p".

Lemma 2.1.14. Given an element f € B, we have
()l e = 1f15 and Infl, = rlfl, for all p € (0,1).

PRrROOF. If f is an element in Ajy¢[1/p,1/[w]], the assertion is evident by construction.
The assertion for the general case then follows by continuity. O

Proposition 2.1.15. The Frobenius eigenspace B¥=P" is trivial for every n < 0.

PROOF. Suppose for contradiction that B#=P" contains a nonzero element f. By Lemma

2.1.14] we have

PLy(s) = Lyp)(ps) = Lyny(ps) = nps + Ly(ps) for all s > 0.
Since Ly is a concave piecewise linear function by Corollary we find

PO+ Lf(s) = np+ p0+Lf(ps) < np 4+ p0iLy(s) for all s > 0, (2.4)
thereby obtaining a contradiction as desired. O

Remark. A similar argument shows that L; is linear for every nonzero f € B*=1. In
Proposition we will build on this fact to prove that B¥=! is naturally isomorphic to Qp.

Proposition 2.1.16. Let [a,b] be a closed subinterval of (0,1), and let f be a nonzero element
in Bl y). Then we have [f|, # 0 for every p € [a,].

PROOF. Proposition [2.1.10 implies that Ly, (—log,(p)) = —log, (|f|p> is finite for

every p € [a,b], thereby yielding the desired assertion. O

Corollary 2.1.17. For every closed interval [a,b] C (0,1) the ring Biay) is an integral domain.

PrOOF. This is an immediate consequence of Proposition|L.2.9|and Proposition[2.1.16| [
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2.2. Divisors and zeros of functions
In this subsection we define the notion of divisors on Y for elements in B.

Definition 2.2.1. A divisor on Y is a formal sum Z ny -y with n, € Z such that for every
yey
closed interval [a,b] C (0, 1) the set Zy, ) = {ye Yiap :ny #0 } is finite.

Remark. Definition [2.2.1|is comparable with the definition of Weil divisors on locally noe-
therian integral schemes as given in [Stal, Tag 0BE2|.

Lemma 2.2.2. Let f and g be elements in B. Assume that f is divisible by g in Blgy for
every closed interval [a,b] C (0,1). Then f is divisible by g in B.

PROOF. For every n > 2 we may write f = gh,, for some h, € Bjj/n1-1/n- Then by
Corollary and Corollary we find that h, takes a constant value for all n > 2.
Hence we get an element h € B with h = h,, for all n > 2, thereby obtaining the desired
assertion. O

Proposition 2.2.3. Let y be an element in'Y , represented by an untilt C' of F'. Fvery f € B
with f(y) = 0 is divisible by every primitive element & € ker(6¢).

PROOF. Consider an arbitrary closed interval [a,b] C (0,1) with y € Y[,4. By Lemma
2.2.2]it suffices to prove that f is divisible by £ in By, ;). Take a sequence (fy,) in Aine[1/p, 1/[w]]
which converges to f with respect to the Gauss a-norm and the Gauss b-norm. By Corollary
we may write f,(y) = ch, for some ¢, € F. Then we have

cﬁc

lim |¢y| = lim
n—oo n—oo

= lim |fu(y)le = 1f W)l =0,

and consequently find that the sequence ([cy]) converges to 0 with respect to the Gauss a-
norm and the Gauss b-norm. Hence we may replace (fy,) by (fn — [¢n]) to assume f,(y) =0
for all n > 0.

Let Oc Aine[1/p, 1/[w]] — C be the ring homomorphism which extends the untilt map

Oc. Proposition |1.1.19) implies that & generates ker(fc). We may thus write f, = &g, for
some gpn, € Aint[1/p,1/[w]]. Then for every p € [a,b] we use Proposition to find

. . .
Jim g 41— gnl, = A [€(gnt1 = gn)l, = A |[fatr = ful, =0,
P P

which means that the sequence (g,,) is Cauchy with respect to the Gauss p-norm. Therefore
the sequence (g,,) defines an element g € B, with f = &g. O

Remark. By Corollary we may write p = (p")ti for some p’ € mp, which is uniquely
determined up to unit multiple. Then we obtain a primitive element [p’] — p € ker(A¢), and
consequently find an expression f = ([pb] — p)g for some g € B by Proposition This is
an analogue of the fact that a holomorphic function f on D* with a zero at zg € D* can be
written in the form f = (z — zp)g for some holomorphic function g on D*.

Corollary 2.2.4. Let C be a characteristic 0 untilt of F. Every primitive element § € ker(0¢)
generates ker(ég).

Remark. Let [a,b] be a closed subinterval of (0,1) with |p|~ € [a,b]. By the proof of
Proposition [1.2.16] the untilt map 6 extends to a surjective continuous ring homomorphism

ég : Blap) = C. Then we can similarly show that every primitive element { € ker(fc)

generates ker(gg ).
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Proposition 2.2.5. Let C be a characteristic O untilt of F', and let Oc[1/p] : Ane[l/p] — C
be the ring homomorphism which extends the untilt map 0c. Then we have

Ain[1/p] Nker(0) = ker(0c[1/p))  for all j > 1.

PrOOF. The assertion for j = 1 follows by observing that 5; restricts to Oc[1/p]. Let us
now proceed by induction on j. We only need to show A¢[1/p] Nker(0c)’ C ker(6c[1/p]),
since the reverse containment is obvious by the fact that 6¢c restricts to 6c[1/p]. Let a be an
arbitrary element in Aj¢[1/p] Nker(fc)?, and choose a primitive element ¢ € ker(6c). Then
§ generates both ker(fc) and ker(6¢[1/p]) by Corollary and Proposition [1.1.19] Hence
we may write a = &b for some b € B. In addition, since we have

Ant[1/p] Nker(8c)? C Ae[1/p] Nker(8c)' ™ = ker(6c[1/p])"
by the induction hypothesis, there exists some ¢ € Aj¢[1/p] with a = &~1c. We then find
0=a—a=gb—glc=g (e —0),

and consequently obtain ¢ = &b by Corollary [2.1.17} This implies ¢ € Aju¢[1/p] N ker(ga), and
in turn yields ¢ € ker(6¢([1/p]) by the assertion for j = 1 that we have already established.
Therefore we deduce a = &/~ tc € ker(0c[1/p])? as desired. O

Definition 2.2.6. Let y be an element in Y, represented by an untilt C' of F'. We define the
de Rham local ring at y by

Bp(y) = lim Aing[1/p]/ ker(0c[1/p])’

pami——
J

where 0c[1/p] : Aint[l/p] — C' is the ring homomorphism which extends the untilt map 6.
Proposition 2.2.7. Let y be an element in Y, represented by an untilt C' of F.

(1) The ring B(J{R(y) 1s a complete discrete valuation ring with C as the residue field.
(2) Every primitive element in ker(6¢) is a uniformizer of Big(y).
(8) There exists a natural isomorphism
By (y) = lim B/ ker(0c)’
J

PRrooF. Since C is algebraically closed as noted in Proposition all results from the
first part of in Chapter remain valid with C' in place of Cg. Hence the statements
and follow from Proposition in Chapter and Proposition

It remains to verify the statement Let Oc[1/p] : Aing[1/p] — C be the surjective ring
homomorphism which extends the untilt map 6, and choose a primitive element & € ker(6¢).
Then & generates both ker(ég) and ker(6¢c[1/p]) by Corollary and Proposition
Hence we get a natural map

Bl () = lm Awi[1/p]/€ Aue[1/p] — lim B/ B = lim B/ ker(Bc)’ (2.
J J J

which is easily seen to be injective by Proposition Moreover, since we have

Ainf[l/p]/gAinf[l/p] =20 B/gBa

the map (22.5)) is surjective by a general fact as stated in [Stal, Tag 0315]. We thus deduce
that the natural map (2.5)) is an isomorphism, thereby completing the proof. O
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Definition 2.2.8. Let f be a nonzero element in B. We define its order of vanishing at
y €Y to be its valuation in BJ;(y), denoted by ord,(f).

Remark. The element y gives rise to a point iy € ) as described in Example With
Proposition and our discussion in we can show that B:R(y) is the completed local
ring at g. In this sense, Definition 2.2.8 agrees with the usual definition for order of vanishing.

Example 2.2.9. Let £ be a nondegenerate primitive element in Aj,¢. Theorem [1.1.21]implies
that § vanishes at a unique element y¢ € Y. Then we have
1 fory =y,

ordy (§) = {0 for y # ye.

Lemma 2.2.10. Let f and g be nonzero elements in B. Then we have
ordy(fg) = ordy(f) + ordy(g) forally €Y.

PRrOOF. This is evident by definition. O

Proposition 2.2.11. Let f be a nonzero element in B. For every closed interval [a,b] C (0, 1),
the set Zjq ) = { Y € Vg s ordy(f) #0 } is finite.

PROOF. Let us write [ := —log,(b) and r := —log,(a). We also set n := d_Ly(l) —
04 L¢(r), which is a nonnegative integer by Corollary [2.1.11] Since we have ord,(f) > 0 for
all y € Y, it suffices to show

Z ordy(f) < n. (2.6)
yEZ[ayb]
Suppose for contradiction that this inequality fails. By Proposition [2.2.3] Example and
Lemma [2:2.10] we may write
f=&& &g (2.7)
for some g € B and primitive elements &1, -+ ,&,+1 € Ajns such that each & vanishes at a

unique element y; € Y|, . Then Example and Example together imply that for
eachi=1,--- ,n+ 1 we have

Le(s) = {3 1 for s < —logp(]yi]),
—log,(Jyil) ~ for s > —log,([yil)-
Hence we obtain
0_Leg(l) —04Le(r)=1-0=1 foreachi=1,--- ,n+1.
In addition, by Corollary we have 0_L¢(l) — 04L¢(r) > 0. Therefore we use Lemma

and (2.7) to find
n=0_L¢(l)—0+Ls(r)

n+1
= > (0-Le(1) = 04 Ley(r) + (0-Ly (1) — Ly (r))
=1
>n—+1,
thereby obtaining a contradiction as desired. O

Remark. It turns out that the inequality (2.6]) is indeed an equality.
Definition 2.2.12. For every f € B, we define its associated divisor on Y by

Div(f) =Y ordy(f) - y.

yey



2. GEOMETRIC STRUCTURE 135
2.3. The logarithm and untilts

In this subsection, we define and study the logarithms of elements in the multiplicative
group 1+ mp. For the rest of this section we write m}, := mp\ {0 }.

Proposition 2.3.1. There exists a group homomorphism log : 1 +mp — B¥~™P with

S ([e]=1)"
log(e) := Z(—l)”“gi for everye € 1 +mp. (2.8)
n=1 n
PROOF. Given arbitrary ¢ € 1 + mp and p € (0,1), we write [e] — 1 = > [c,]p"™ with
cn, € O to find
le] - 1], < max(jeo] , p) = max(|e — 1], p) < 1.
Hence we obtain a map log : 1 +mp — B satisfying . It then follows that log is a group
homomorphism by the identity of formal power series log(zy) = log(z) +1log(y). Furthermore,
as o is continuous by construction, for every € € 1 + mp we find

pliog(e)) = (-1 PEL DT sm gyt DT o) = o),
n=1 n=1
thereby completing the proof. O

Remark. We will see in Proposition that log is a Q,-linear isomorphism.

Definition 2.3.2. We refer to the map log : 1 + mp — B¥=P constructed in Proposition
2.3.1| as the logarithm on 1 + mp.

Proposition 2.3.3. Let C' be a characteristic 0 untilt of F', and let m¢o denote the mazimal
ideal of Oc. There exists a commutative diagram

L mp %y pomr

et Jgg (2.9)

Ers—
! * e lOgﬂpoo ¢

where all maps are group homomorphisms.

PROOF. Let ¢ be an arbitrary element in Or. By Proposition in Chapter [[TI] there
exists some a € O¢ with ¢f —1 = (¢ — 1)jj + pa. If ¢ belongs to 1 + mp, then we have

’cﬁ—l

< max (|(c = 1f| . pal) = max(le = 1], palc) < 1

and in turn obtain ¢! € 1+ mg. Conversely, if ¢f belongs to 1 4+ m¢, then we have
~ 1= [(e= 1] < max (|¢* ~1] .pa) <

le — 1] (c—1) o Smax|e oPo

and consequently obtain ¢ € 1 + mp. Therefore in light of Corollary we deduce that
1 + mp maps onto 1 + m¢ under the sharp map.

Since the map 55 is continuous by construction, for every € € 1 + mpg we have

/\ S 0 _1\n 0 f_ 1\n
Foltog(e) = (- L= sh gy B2 DTy, )
n=1 n=1

where the last identity follows by Example [3.3.5)in Chapter [l Moreover, as C' is algebraically
closed by Proposition the map logupoo is a surjective homomorphism by Proposition
in Chapter [LIl Therefore we obtain the commutative diagram (2.9) as desired. O
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Proposition 2.3.4. For every € € 1+ m},, the element
(] -1
[e1/P] — 1

is a nondegenerate primitive element which divides [] — 1 but not [¢'/7] — 1.

&= =14+ [gl/p] I [5(1"_1)/1”} € Apy

PROOF. Let us write k := Op/mp for the residue field of F', and W (k) for the ring of
Witt vectors over k. In addition, for every ¢ € O we denote by ¢ its image under the natural
map Op — k, and by [¢] the Teichmiiller lift of ¢ in W (k). Lemma from Chapter
yields a homomorphism 7 : Ay — W (k) with

T (Z[cn]p") = Z[@]pn for all ¢,, € Of.

We then find 7(£.) = p by observing /P = /P = 1, and consequently obtain a Teichmiiller
expansion

& = [mo] + [m1 + 1]p + Z[mn]p” with m,, € mp.
n>2
Since we have |mg| < 1 and |m; + 1| = 1, we deduce by Proposition [1.1.12| that & is a
primitive element in A;,¢. Moreover, & is nondegenerate as we have

_ Up o o o-)p 1
mog=1+e/P+...+¢ 51/1’—17&0'

It is also evident that & divides [¢] — 1. On the other hand, & does not divide [¢'/P] — 1,
since otherwise & = 14 [¢/?] + --- + [¢P=1/P] should divide p, yielding a contradiction by

Proposition [T.1.13] O

Proposition 2.3.5. For every ¢ € 1 + m},, there exists some y. € Y with ord,, (log(e)) = 1.

PROOF. Proposition allows us to write [¢] —1 = & ([¢'/P] —1) for some nondegenerate
primitive element & € Ajys which does not divide [¢'/?] — 1. Then by Example and
Lemma we find an element y. € Y with ord,_([¢] — 1) = 1. This means that the image
of [c] — 1 in Bj(y:) is a uniformizer. The assertion then follows from the fact that log(e) is
divisible by [¢] — 1 but not by ([g] — 1)2. O

Proposition 2.3.6. There exists a bijection Y — (1+m%})/Z5 which maps the equivalence

class of an untilt C' of F to the Z -orbit of elements ec € 1+mY, with EﬂC =1 and (Elc/p)jj # 1.

PrROOF. Let y be an arbitrary element in Y, represented by an untilt C' of F'. Choosing

an element ec € 1+ m} with sﬁc = 1 and (é‘é«/p )ﬁ % 1 amounts to choosing a system of
primitive p-power roots of unity in C” ~ F. Such a system exists uniquely up to Z; -multiple
by Proposition [1.1.6

Let us now consider an arbitrary element ¢ € 1 4+ m}.. Proposition yields a nonde-
generate primitive element & € Ay, which divides [¢] — 1 but not [¢'/?] — 1. Then by Theorem
we get an untilt C. of F with ¢! = 1 and (! p)ti # 1. Moreover, for every untilt C' of
F with ¢! = 1 and (51/1’)ti # 1, we have

ef -1 Oc([e] = 1)
0= (gl/p)ﬁ 1 = Oc (/7] — 1) =0c(&:)

and consequently find by Proposition[I.1.19 and Theorem[I.1.2I]that C' and C. are equivalent.

Therefore we deduce that ¢ is the image of a unique element in Y. U
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Definition 2.3.7. Let ¢ denote the Frobenius automorphism of F'.
(1) Given an untilt C' of F with a continuous isomorphism ¢ : C* ~ F, we define its
Frobenius twist ¢(C) as the perfectoid field C' with the isomorphism ¢% o ¢.
(2) We define the Frobenius action on Y as the map ¢ : Y — Y induced by Frobenius

twists.

Lemma 2.3.8. For every characteristic 0 untilt C' of F' we have % = 55 o

PROOF. The identity is evident on Ajn¢[1/p,1/[w]] by construction. The assertion then
follows by continuity. O

Remark. In Example [1.3.22| we described the Frobenius action ¢ on ). By Lemma [2.3.8] it
is straightforward to check that the map Y — ) given by Example is compatible with
the Frobenius actions on Y and V.

Proposition 2.3.9. Let f be a nonzero element in B¥=P" for some n > 0. Then we have
ordy (f) = ordy,) (f) for ally € Y.

Proor. Let C' be an untilt of F' which represents y. By corollary there exists a
primitive element £ which generates ker(¢). It is then straightforward to check by Proposition

1.1.12/that ¢(€) is a primitive element in Aj,¢. Moreover, we have ¢(§) € ker(%) by Lemma
[2.3.8 Let us write i := ord,(f) and j := ordg(y)(f). By Proposition we may write

f=¢&g=pE)’h with g, h € B.

Then we have f = p "o(f) = go(f)i -p~"g and consequently find ¢ < j. Similarly, we have
f=ovoYo(f) =p" (f) = & -p™h and consequently find i > j. Therefore we deduce i = j
as desired. 0

Proposition 2.3.10. For every € € 1 4+ m},, there exists some y. € Y with

Div(log(e)) = Z " (ye)-

nez

PROOF. Proposition yields an untilt C. of F with e*¢= = 1 and (51/7’)%E # 1. Let
Ye € Y be the equivalence class of C.. Consider an arbitrary element y € Y, represented by
an untilt C of F. We know by Proposition in Chapter [l that ker(logupoo) is the torsion
subgroup of 1 + m¢ where mgo denotes the maximal ideal of O¢. Since we have ¢ # 1 by
assumption, Proposition implies that log(e) vanishes at y if and only if there exists some
n € Z with (57’71)ﬁc =1 and (61’7171)tjo # 1, or equivalently (go’}(s))ﬁc =1 and (cp’}fl(e))ﬁc #1
where pp denotes the Frobenius automorphism of F'. Hence by Proposition [2.3.6] we deduce

that log(e) vanishes at y if and only if there exists some n € Z with y = ¢"(y.). Since we
have log(e) € B¥=P, the assertion follows by Proposition and Proposition [2.3.9] O

Proposition 2.3.11. There exists a natural bijection (1 + m})/Q) — Y/¢% which maps
the Qp -orbit of an element € € 1 +mY, to the set of elements in'Y at which log(e) vanishes.

Proor. Lemma[2.3.8[implies that the Frobenius action ¢ on Y corresponds to the multi-
plication by 1/p on (14+m},)/Z) under the bijection Y — (14 m},)/Z given by Proposition
2.3.6. Hence we obtain a natural bijection (1 + mj})/QY — Y/ ¢”. Let us now consider
an arbitrary element € € 1 + mp. Its Q;-orbit maps to the ¢-orbit of an element y € YV
with a representative C' that satisfies ¥ = 1. Then we find ég(log(s)) = log, .. (e") = 0 by
Proposition [2.3.3] and consequently deduce the desired assertion by Proposition O
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2.4. Points and regularity

In this subsection, we prove that the Fargues-Fontaine curve is a Dedekind scheme whose
closed points classify the Frobenius orbits in Y. For the rest of this chapter, let us write
P := @ B?7P" and denote by | X| the set of closed points in X. We also invoke the following
technical result without proof.

Proposition 2.4.1. Let f and g be elements in B. Then f is divisible by g in B if and only
if we have ordy,(f) > ordy(g) for ally € Y.

Remark. This is one of the most difficult results from the original work of Fargues and
Fontaine [FF18|. Curious readers can find a complete proof in [Lur), Lecture 13-16]. Here we
provide a brief sketch of the proof.

We only need to prove the if part as the converse is obvious by Lemma Moreover,
in light of Lemma we may replace B by Bj,; for an arbitrary interval [a,b] C (0,1).
The key point is to show that every element in Bj,; admits a (necessarily unique) factor-
ization into primitive elements. By a similar argument as in Proposition the proof
boils down to showing that every h € B with 0_Ly, (44(5) # 04+Lp o (s) for some
s € [~1log,(b), —log,(a)] has a zero y € Y, .

Let us set Y := Y U { 0}, where o denotes the equivalence class of F' as the trivial untilt
of itself. Then Y turns out to be complete with respect to an ultrametric d given by

d(yl,yQ) = |902 (51)‘02 for all y1,4y2 € }/}

where & and C9 respectively denote a primitive element that vanishes at y; and an untilt
of F' that represents yo. If h is an element in Ajn[1/p,1/[w]], an elegant approximation
argument using Legendre-Newton polygons allows us to construct a zero y € Y,-s ,-s) of h as

the limit of a Cauchy sequence (y,) in Y with |y,| = p~* and lim |h(yn)|c. = 0 where each
n—oo "

C,, is a representative of y,. For the general case, we can construct Cauchy sequences (hy,)
in Aine[1/p, 1/[@]] and (yn) in Yj,-s —s) with hp(yn) =0 and lim h, = h with respect to the
’ n—oo

Gauss p~°-norm, thereby obtaining a zero y € Y}, ,—s of h as the limit of (yy).
Corollary 2.4.2. The ring B~ is a field.

PrOOF. Consider an arbitrary nonzero element f € B¥=!. We have Div(f) = 0, since
otherwise f would be divisible by some g € B¥=/P, thereby contradicting Proposition [2.1.15
Hence by Proposition we deduce that f admits an inverse in B¥="! as desired. O

Remark. As remarked after Proposition [2.1.15] we will see in Proposition that B¥=!
is canonically isomorphic to Q.

Lemma 2.4.3. Let f be an element in B¥=P" for some n > 0, and let € be an element
in 1+ mj,.. Assume that both f and log(e) vanish at some y € Y. Then there exists some

g € B¥=P""" with f = log(e)g.
PROOF. By Proposition we have
ordgi, (f) = ordy(f) > 1 for all ¢ € Z.
In addition, by Proposition [2.3.10| we find
Div(log(e)) = Y ¢'(y).
€L
Since log(e) belongs to B¥=P by construction, the assertion follows by Proposition m O
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Proposition 2.4.4. For every e € 1 +mp, the element log(e) € B¥=P is a prime in P.

PROOF. The assertion is obvious for ¢ = 1 as P is an integral domain by Corollary [2.1.17]
We henceforth assume ¢ # 1. Consider arbitrary elements f and ¢ in P such that log(e)
divides fg in P. We wish to show that log(e) divides either f or g in P. Since log(e) is
homogeneous, we may assume without loss of generality that both f and g are homogeneous.
Proposition [2.3.F| implies that log(e) vanishes at some y. € Y. Then we find by Lemma [2.2.10]
that either f or g vanishes at y., and in turn deduce the desired assertion by Lemma[2.4.3] [J

Proposition 2.4.5. Let f be a nonzero element in B¥=P" for some n > 0.
(1) The map ¢ uniquely extends to an automorphism p[1/f] on B[1/f].
(2) We may write
f=Xlog(e1)---log(en) with A € B~ and e; € 1 + m} (2.10)

where the factors are uniquely determined up to Q; -multiple.

PRrROOF. The first statement is straightforward to verify. Let us prove the second statement
by induction on n. Since the assertion is obvious for n = 0, we henceforth assume n > 0.
Then f vanishes at some y € Y'; otherwise, it would be invertible in B by Proposition [2.4.1
and thus would yield a nonzero element f~! € B¥=P"" contradicting Proposition Now
Lemma and Proposition together yield some e, € 1+ mp and g € B#=" " with
f =1log(en)g. Hence by induction hypothesis we obtain an expression as in , where the
factors are uniquely determined up to @, -multiple by Proposition O

Definition 2.4.6. Given a nonzero homogeneous element f € P, we refer to the map ¢[1/f]
described in Proposition as the Frobenius automorphism of B[1/f]. We often abuse
notation and write ¢ instead of ¢[1/f].

Proposition 2.4.7. Every non-generic point x € X 1is a closed point, induced by a prime
log(e) in P for some e € 1 +m},. Moreover, its residue field is naturally isomorphic to the
perfectoid field given by any y € Y at which log(e) vanishes.

Proor. By Proposition there exists a nonzero element ¢t € BY~P such that z lies in
the open subscheme Spec (B[1/t]#~") of X = Proj(P). Let us denote by p the prime ideal
of B[1/t]*=! which corresponds to x, and take an element f/t" € p with f € B¥=". By
Proposition [2.4.5 we may write

tin =\ logfl) : logf?) o bgig") with A € B#=L and &; € 1 + m}.

Since A is a unit in B¥=! by Corollary we have log(e)/t € p for some € € 1 + m7,.

Take an element y € Y at which log(e) vanishes, and choose a representative C' of y. Then
t does not vanish at y, since otherwise Corollary and Lemma together would imply
that log(g)/t is an invertible element in B¥=!, which is impossible as p is a prime ideal. We
thus obtain a map 6, : B[1/t]*~" — B[1/t] — C where the second arrow is induced by Oc.

It suffices to show that 6, is a surjective map whose kernel is generated by log(e)/t.
Proposition implies that ég induces a surjection B¥Y=P —» (', which in turn implies
that 6, is already surjective when restricted to (1/t)B¥=P. Let us now consider an arbitrary
element f'/t" € ker(f,) with f/ € B®=P". Arguing as in the first paragraph, we find that
f'/t" is divisible by log(¢’)/t € ker(§,) for some €’ € 1+ m},. Then we have bc(log(e')) = 0,
which means that log(¢’) vanishes at y. Therefore we deduce by Lemma that log(e)/t
divides log(¢’)/t, and thus divides f’/t as desired. O
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Theorem 2.4.8 (Fargues-Fontaine [FF18]). The scheme X has the following properties:

(i) There exists a natural bijection | X| — Y /¢” which maps the point induced by log(e)
for some € € 1 +m7}, to the set of elements in'Y at which log(e) vanishes.

(i) X is a Dedekind scheme such that the open subscheme X\ { x } for every x € |X| is
the spectrum of a principal ideal domain.

(11i) For every x € |X|, its completed local ring @ admits a natural identification
OX,:L‘ = Bc—li—R(y)
where 5 is any element in the image of x under the bijection | X| — Y /¢”.

PRrROOF. Proposition yields a surjective map 1+ mj, — | X| which associates to each
€ € 1+ mj, the point z € X induced by the prime log(e) € P. Moreover, Lemma implies
that two elements €; and €2 in 1 +mj}, map to the same point in |X| if and only if log(e1) and
log(e2) have a common zero. Therefore we deduce the property |(i)| by Proposition

Let us now fix a closed point x in X. As shown in the preceding paragraph, the point
x is induced by log(e) for some ¢ € 1+ mj. It follows that X\ {« } is the spectrum of
the ring B[1/ log(s)]“"zl. In addition, we find by Proposition m that every prime ideal of
B[1/ log(a)]‘pzl is a principal ideal. Therefore we obtain the property by a general fact as
stated in [Stal Tag 05KH].

It remains to establish the property Let us fix an element y € Y at which log(e)
vanishes, and take an untilt C' of F' which represents y. We also choose an element ¢t € B¥=P
which is not divisible by log(e). Then we have a surjective map 55[1 /t] : B[1/t] - C induced
by Oc. Let us denote by 6, the restriction of 55[1 /1] to B[1/t]*='. Proposition implies
that we may identify z as a point in Spec (B[1/t]*=") given by ker(f,). Hence we obtain an
identification o

Ox ., = lim B[1/t)7="/ ker(6,,)’. (2.11)

iy

J
Meanwhile, Proposition allows us to identify B:{R(y) as the completed local ring of a

closed point y € Spec (B) given by ker(6¢), thereby yielding an identification

By () = 1im B1/1)/ ker (Be 1 /1)) (2.12)

For an arbitrary element f/t" € B[1/t]#~" ﬂker(gg)j with f € B#=P" and j > 1, we have
ord,(f) > j and consequently find by Lemma that f/t™ is divisible by log(¢)? /7. Since
log(e)/t belongs to ker(#,), we obtain an identification

B[1/t]*='n ker(é(\;)j = ker(6,)’ forall j > 1

and in turn get a natural injective map

lim B(1/4]7="/ ker(8,)! < lim B[1/t]/ ker(c[1/¢])’. (2.13)

Moreover, since both B[1/t]?="/ker(f,) and B[l/t]/ker(éa[l/t]) are isomorphic to C, the
map ([2.13)) is surjective by a general fact as stated in [Stal, Tag 0315]. Therefore we obtain
the property |(iii)| by (2.11)) and ([2.12)). O

Remark. The scheme X is defined over @, as we will see in Corollary However, it
is not of finite type over QQ, since the residue field of an arbitrary closed point is an infinite

extension of Q, by Proposition
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3. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles on
the Fargues-Fontaine curve. The primary references for this section are Fargues and Fontaine’s
survey paper [FF14] and Lurie’s notes [Lur].

3.1. Frobenius eigenspaces

In order to study the vector bundles on X it is crucial to understand the structure of the
graded ring P = @ B¥~"". In this subsection, we aim to establish an explicit description of
the Frobenius eigenspaces B¥=P" for all n > 0.

Proposition 3.1.1. The natural map F' — B given by Teichmiiller lifts is continuous.

PrOOF. Take a characteristic 0 untilt C' of F. The natural map F©' — B composed
with f¢ coincides with the sharp map associated to C', which is evidently continuous by
construction. Hence the assertion follows by Proposition [1.2.16 U

Lemma 3.1.2. For every f € B with [f|, <1 for all p € (0,1), there exists a sequence (fy)
in Aing[1/[w]] which converges to f with respect to all Gauss norms.

__ PRrROOF. We may assume [ # 0, since the assertion is obvious for f = 0. Take a sequence
(fn) in Aine[1/p, 1/[w]] which converges to f with respect to all Gauss norms. For each n > 1,
we may write f, = f, + Z[cm]pl with ¢,; € F and f,, € Aine[l/[w]]. Take arbitrary real

<0
numbers p € (0,1) and € > 0. Then for all sufficiently large n we have
}; - fn) = Sup (|Cn,i‘ pi) < sup (e_i) - sup (|Cn,i| Eipi) <e- ff\n/ =€ |f’5p <e
P <0 1<0 1<0 €p
where the second identity follows from Lemma [2.1.8, Hence we obtain lim jf; — fn| =0for
n—oo P

all p € (0, 1), thereby deducing that (f,) converges to f with respect to all Gauss norms. [

Proposition 3.1.3. Let f be an element in B. Assume that there exists an integer n > 0
with |f\p < p" for all p € (0,1). Then we may write f = [c|p™ + g for some c € Op and g € B
with |g|, < p" L for all p € (0,1).

PROOF. We may replace f by f/p" to assume n = 0. Lemma yields a sequence
(fi) in Ajne[1/[w]] which converges to f with respect to all Gauss norms. For each i > 1,
we denote by [¢;] the first coefficient in the Teichmiiller expansion of f;. Then we have
cit1 — ¢l < |fi1— fil, for all i > 1 and p € (0,1). This means that the sequence (c;) is
Cauchy in F' and thus converges to an element ¢ € F. In addition, given a real number
p € (0,1), Lemma yields [¢;| < [fil, = [f], < 1 for all sufficiently large ¢, thereby
implying ¢ € Op.

Let us now set g; := fi — [ci] € Aint[l/[w]] for each ¢ > 1 and take g :== f — [c] € B.
We may assume g # 0, since the assertion is obvious if we have ¢ = 0. Each g¢; admits a
Teichmiiller expansion where only positive powers of p occur, so that all slopes of L, are
positive integers by Proposition Moreover, Proposition implies that the sequence
(g9i) converges to g with respect to all Gauss norms. Therefore we deduce by Lemma m
that all slopes of £, are positive integers. We then use Lemma 2.1.2] to obtain

Ly(s) > min (Lf(s), Lig(s)) = min (— log,, (|f]p,5) , —log, (\c])) >0 for all s > 0,
thereby deducing L4(s) > s for all s > 0, or equivalently |g|, < p for all p € (0,1). O
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Proposition 3.1.4. Let f be a nonzero element in B.
(1) The element f belongs to Ai¢ if and only if we have \f|p <1 forall p € (0,1).

(2) The element f belongs to Aine[1/p] if and only if there exists an integer n with |f|, <
p" for all p € (0,1).

(8) The element f belongs to Awne[l/[w]] if and only if there exists a constant C > 0 with
|fl, < C forall p€(0,1).

(4) The element f belongs to Aine[1/p,1/[w]] if and only if there exist a constant C' > 0
and an integer n with |f]p < Cp" for all p € (0,1).

PROOF. If f belongs to Ajng, then we clearly have |f| <1 for all p € (0,1). Conversely,
if we have [f|, <1 for all p € (0,1), then by Proposition we can inductively construct a
sequence (¢;) in O with

f=> lely'

=0

n—1
‘ < p" for all n > 0 and p € (0,1),

p
thereby deducing f € Aj,s. Therefore we establish the statement

Now we find that f belongs to Aj,¢[1/p] if and only if there exists an integer n with
p"f € A, or equivalently \f|p < |p|;" = p " for all p € (0,1), thereby obtaining the
statement Similarly, we find that f belongs to Aiy¢[1/[ww]] if and only if there exists an
integer n with [@"]f € Ajns, or equivalently |f|, < [[@]|," = |w|™" for all p € (0,1), thereby
obtaining the statement [(3)l Finally, we find that f belongs to Ai,¢[1/p,1/[w]] if and only if
there exist integers | and n with p"[w]'f € Ajnt, or equivalently | f| p < Hw]lp”|p = |w|l p" for
all p € (0,1), thereby obtaining the statement O

Lemma 3.1.5. Given a nonzero element f € B¥=!, there exists an integer n with ]f|p =p"
for all p € (0,1).
PrRoOOF. By Lemma we have
pLs(s) = Ly5)(ps) = L (ps) for all s > 0, (3.1)

and consequently find pdy Lf(s) = p0;Ly(ps) for all s > 0. Hence Corollary implies
that L is linear with integer slope, which means that there exist an integer n and a real
number 7 with £7(s) = ns+r for all s > 0. We then find r = 0 by (3.1)), and in turn obtain
Ls(s) = ns for all s > 0, or equivalently [f|, = p" for all p € (0,1). 0O

Proposition 3.1.6. The ring B¥=! is canonically isomorphic to Qp-

PRrOOF. Let W(F,) denote the ring of Witt vectors over F,. Under the identification
Q= WEN)1/p] 2 { D lenlp™ € Auill/p] i cn €F,p |, (3.2)

we may regard @, as a subring of B¥=1. Let us now consider an arbitrary nonzero element

f € B¥=!. Proposition and Lemma together imply that f is an element in A;n¢[1/p].
Hence we may write f = ) [c,]|p™ with ¢, € Op. Since f is invariant under ¢, for each n € Z

we find ¢, = ¢, or equivalently ¢, € F,. We thus deduce f € Q, under the identification
(3.2), thereby completing the proof. O

Remark. Our proof does not depend on Proposition that we assume without proof.
Corollary 3.1.7. The scheme X 1is defined over Q.
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Proposition 3.1.8. The map log : 1 +mp — B¥7P is a continuous Q,-linear isomorphism.

ProOOF. Choose a characteristic 0 untilt C of F. The sharp map associated to C is
continuous by construction. In addition, the map log,, . is continuous by Proposition
in Chapter [[Tl Therefore it follows by Proposition and Proposition that the map
log is continuous. Moreover, since every element in Q,, is the limit of a sequence in Z, we obtain
the Qp-linearity of log by Proposition El’ and consequently deduce the surjectivity of log
by Proposition and Proposition [3.1.6], We also find that log is injective, as Proposition
yields log(e) # 0 for every € € 14+m7},. Therefore we establish the desired assertion. [J

Corollary 3.1.9. There exists a natural bijection |X| — (B*=P\{0})/Q) which maps the
point induced by log(e) for some € € 14+ mp, to the Q. -orbit of log(e) in B#~P.

Proor. This is merely a restatement of the property |(i)|in Theorem using Proposi-
tion B.1.8 O

Corollary 3.1.10. Let f be a nonzero element in B¥=P" for some n > 1. We may write
f =log(e1)log(e2) - - - log(en) with ¢; € 1 + mp

where the factors are uniquely determined up to Q; -multiple.

ProOF. This is an immediate consequence of Proposition Proposition [3.1.8] and
Proposition [2.4.5 U

Remark. Corollary and Corollary are respectively analogues of the following
facts about the complex projective line PL = Proj (Clz1, 22)):

(1) Closed points in ]P’(lc are in bijection with the Q,-orbits of linear homogeneous poly-
nomials in C[z1, z2].

(2) Every homogeneous polynomial in C[z1, z2] of positive degree admits a unique fac-
torization into linear homogeneous polynomials up to C*-multiple

It is therefore reasonable to expect that the Fargues-Fontaine curve X is geometrically similar
to PL, even though X is not of finite type over Q,. We will solidify this idea in the next
subsection by studying line bundles on the Fargues-Fontaine curve.

Proposition 3.1.11. Let BT be the closure of Ai[l/p] in B. For every n € 7 we have
B#=r" C BT.

PRroOF. For n < 0, the assertion is obvious by Proposition [2.1.15| and Proposition [3.1.6
Moreover, we find

[e.9]

N gy =D
log(e) = Z( 1) €eB for every e € 1+ mp
n=1 "
as each summand belongs to Ajn[1/p], thereby deducing the assertion for n > 1 by Corollary
3.1.10 O

Remark. For every nonzero element f € B¥=" we find liH(l] L¢(s) = 0 by the functional
S—>

equation pL¢(s) = ns + L;(ps) as obtained in the proof of Proposition [2.1.15, Hence we can
alternatively deduce Proposition [3.1.11] from an identification

B+:{f€B:giB[1)£f(s)20}

which is not hard to verify using Proposition and Proposition We note that this
proof does not rely on Proposition which we assume without proof.
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3.2. Line bundles and their cohomology

In this subsection, we classify and study line bundles on the Fargues-Fontaine curve.
Throughout this subsection, we denote by Div(X) the group of Weil divisors on X, and by
Pic(X) the Picard group of X. In addition, for every rational section f on X we write Div(f)
for its associated Weil divisor on X.

Definition 3.2.1. We define the divisor degree map of X to be the group homomorphism
deg : Div(X) — Z with deg(z) =1 for all x € | X|.

Proposition 3.2.2. For every D € Div(X), we have deg(D) = 0 if and only if D is principal.

PROOF. Let K(X) denote the function field of X. We also let () denote the fraction field
of P. Note that there exists a natural identification

K(X)2{f/geQ: f.ge B** forsomen>0}. (3.3)

Consider an arbitrary element f € K(X)*. By and Corollary there exist some
nonzero elements ti,to, - ,to, € B¥~P with
_ tito -ty
 tngatnga - cton
We then find deg(Div(f)) = 0 as Corollary [3.1.9)yields z1, z2, - - - , T2, € |X| with Div(t;) = ;.
Let us now consider an arbitrary Weil divisor D on X with deg(D) = 0. We may write

D=(xi4+zo+ - +x) — (Tpy1 + Tpsa+ -+ x2p) with z; € | X|.
Moreover, Corollary yields ty,to,- -, tay, € B¥=P with Div(t;) = x;. Hence we have

t1to - - -t
D = Div (12">7
tn+1tn+2 < top

which is easily seen to be a principal divisor by ([3.3)). O

Definition 3.2.3. For every d € Z, we write P(d) := @B“’:pdﬂ and define the d-th twist

nez
of Ox to be the quasicoherent sheaf O(d) on X associated to P(d).

Lemma 3.2.4. For every d € 7Z, the sheaf O(d) is a line bundle on X with a canonical
isomorphism O(d) = O(1)®4.

PROOF. The assertion follows from Corollary |3.1.10| by a general fact as stated in [Stal,
Tag 01MT]. O

~

Proposition 3.2.5. The divisor degree map of X induces a natural isomorphism Pic(X) = 7Z
whose inverse maps each d € Z to the isomorphism class of O(d).

PROOF. Since X is a Dedekind scheme as noted in Theorem we can identify Pic(X)
with the class group of X. Hence by Proposition the divisor degree map of X induces
a natural isomorphism Pic(X) = Z. Let us now choose a nonzero element ¢ € B¥=P, which
induces a closed point x on X by Corollary It is straightforward to check that t is a
global section of O(1), which in turn implies by Lemma that O(1) is isomorphic to the
line bundle that arises from the Weil divisor Div(¢) = = on X. Hence the isomorphism class
of O(1) maps to deg(x) = 1 under the isomorphism Pic(X) = Z. The assertion now follows
by Lemma O

Remark. Proposition|3.2.5|is an analogue of the fact that there exists a natural isomorphism
Pic(PL) & Z whose inverse maps each d € Z to the isomorphism class of Op1 (d).
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Proposition 3.2.6. Let M = @ M, be a graded P-module, and let M be the associated qua-
nezZ
sicoherent Ox-module. There exists a canonical functorial Q,-linear map Mo — HO(X, M).

PROOF. Since we have B¥=! = Qp as noted in Proposition the assertion follows by
a general fact as stated in [Stal Tag 01M7]. O

Definition 3.2.7. Given a graded P-module M, we refer to the map My — H%(X, M) in
Proposition as the saturation map for M.

Proposition 3.2.8. Let d be a nonnegative integer, and let t be a nonzero element in B¥=P.
The multiplication by t on P induces a commutative diagram of exact sequences

0 ., ge=p? , ge=ptt y B<p:pd“/tB<p:pd . 0

| | |
0 —— HX,0(d)) —— H(X,0(d+1)) —— H°(X,0(d+1)/tO(d)) — 0

where the vertical arrows respectively represent the saturation maps for P(d), P(d + 1) and
P(d+1)/tP(d). Moreover, O(d + 1)/tO(d) is supported at the point x € | X| induced by t.

PROOF. Since P is an integral domain by Corollary [2.1.17] the multiplication by ¢ on P
yields an exact sequence of graded P-modules

0 —— Pd) L% P(d+1) —— P(d+1)/tP(d) — 0 (3.4)
which gives rise to an exact sequence of coherent O x-modules
00— O(d) —— O(d+1) —— O(d+1)/tO(d) —— 0. (3.5)

The top row of the diagram is induced by the sequence , and is exact. The bottom row
of the diagram is induced by the sequence , and is left exact. The commutativity of the
diagram is evident by the functoriality of saturation maps as noted in Proposition [3.2.6

By Corollary we may write ¢ = log(e) for some € € 1+m7,. In addition, Proposition
[2.3.10] yields an element yy € Y at which ¢ vanishes. Let us choose a representative C of y.
Proposition M implies that 55 restricts to a surjective map B¥=P — (. Hence for every
a € C we can take sg,s € B¥~P with 90(80) =1 and 55( ) = a, and consequently obtain
0@(508) =a. In partlcular the map Gc restricts to a surjective map Be=P"" _, O We also
find by Lemma that the kernel of this map is given by tB¥= " Therefore the map 55
induces an 1somorphlsm

Be=r" )y Be=r" & O, (3.6)

Let us now take z € |X| induced by t. Then Prop051t10n allows us to identify C'

with the residue field of z. In addition, Proposition implies that O(d) and O(d+ 1) are

respectively isomorphic to the line bundles that arise from the Weil divisors dz and (d 4 1)z.

It is then straightforward to verify that O(d+1)/tO(d) is supported at = with the stalk given

by t=4710x . /t~4Ox , ~ C. This means that O(d+1)/tO(d) is isomorphic to the skyscraper
sheaf at = with value C. Furthermore, by (3.6 . we obtain an isomorphism

Be=r"" )i pe=r" ~ 0 =~ gO(X, 0(d + 1)/tO(d)),

which is easily seen to coincide with the saturation map for P(d + 1)/tP(d). We then deduce
by the commutativity of the second square that the bottom row is exact, thereby completing
the proof. O
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Theorem 3.2.9 (Fargues-Fontaine [FE18]). We have the following facts about the cohomol-
ogy of line bundles on X :

(1) There exists a canonical isomorphism H°(X,O(d)) = B?=" for every d € Z.
(2) The cohomology group H*(X,O(d)) vanishes for every d > 0.

PROOF. Take a nonzero element t € B¥=P. By Corollary there exists a closed
point  on X induced by t. Let us write U := X\ {x }. Then we have an identification
U = Spec (B[1/t]%71).

For every d € 7Z, the multiplication by ¢ on P yields an injective map of P-graded modules
P(d) — P(d+ 1) by Corollary and in turn gives rise to an injective sheaf morphism
O(d) — O(d + 1). In addition, Proposition implies that each O(d) is isomorphic to
the line bundle that arises from the Weil divisor dz. We then find that lim O(d) is natu-
rally isomorphic to the pushforward of Oy by the embedding U —— X, and in turn obtain
identifications

H' (X,lim O(d)) = H°(U, Oy) = B[1/1]*~",
H' (X,lim O(d)) = H'(U,0p) = 0.

Let us now prove the statement For every d € Z, we denote by a4 the saturation map
of P(d). We wish to show that each oy is an isomorphism. Proposition implies that the
sequence (o) gives rise to a map

B[1/t]*=! 2 1im B¥" — lim HO(X, O(d)) = H° (X, lim O(d)) ,

which is easily seen to coincide with the isomorphism (3.7). Moreover, Proposition and
the snake lemma together yield isomorphisms

ker(ayg) ~ ker(ags1) and coker(ay) ~ coker(ag1) for all d > 0.

Therefore we deduce that g is an isomorphism for every d > 0. In particular, we have
HY(X,0x) = B*=! = Q, where the second isomorphism is given by Proposition Then
for every d < 0, we find that there exists no nonzero element element of H(X,Ox) which
vanishes to order —d at z, and consequently obtain H°(X,O(d)) = 0. We thus deduce by
Proposition 2.1.15] that ag4 is an isomorphism for every d < 0 as well.

It remains to establish the statement For every n > 0, the last statement of Propo-
sition implies that the cohomology of O(d + 1)/tO(d) vanishes in degree 1. Hence for
every d > 0 we have a long exact sequence

HO(X,0(d+ 1)) — HY(X,0(d +1)/t0(d)) — HY(X,0(d)) — H'(X,O0(d)) — 0,

which in turn yields an isomorphism H!(X,O(d)) ~ HY(X,O(d + 1)) as the first arrow is
surjective by Proposition The desired assertion now follows by (i3.8)). O

Remark. Theorem provides analogues of the following facts about the complex projec-
tive line P{ = Proj (Clz1, 29)):

(1) For every d € Z, the cohomology group HY(Pf, O]P’}c (d)) is naturally isomorphic to
the group of degree d homogeneous polynomials in C[z1, z2].

(2) For every d > 0, the cohomology group H'(PL, (91% (d)) vanishes.

However, it is known that H'(X,O(—1)) does not vanish while H' (P, Op1 (—1)) vanishes.
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3.3. Harder-Narasimhan filtration

In this subsection, we review the Harder-Narasimhan formalism for vector bundles on a
complete algebraic curve.

Definition 3.3.1. A complete algebraic curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) The Picard group Pic(Z) admits a homomorphism deg, : Pic(Z) — Z, called a
degree map, which takes a positive value on every line bundle that arises from a
nonzero effective Weil divisor on Z.

Example 3.3.2. Below are two important examples of complete algebraic curves.

(1) Every regular proper curve over a field is a complete algebraic curve by a general
fact as stated in [Stal Tag 0AYY].

(2) The Fargues-Fontaine curve is a complete algebraic curve by Theorem and

Proposition [3.2.5

For the rest of this subsection, we fix a complete algebraic curve Z with a degree map
deg, on the Picard group Pic(Z). Our first goal in this subsection is to study the notion of
degree and slope for vector bundles on Z.

Definition 3.3.3. Let V be a vector bundle on Z.
(1) We write rk(V) for the rank of V, and define the degree of V by

deg(V) = degy (/\rk(v) (V)) .
(2) If V is not zero, we define its slope by

(V) = ig((;))

(3) We denote by VY the dual bundle of V.

Proposition 3.3.4. Let U, V, and W be vector bundles on Z. Assume that there exits a
short exact sequence

0 U >V > W 0.
(1) We have identities
rk(V) = rk(U) + rk(W) and deg(V) = deg(U) + deg(W).
(2) If U, V, and W are all nonzero, then we have
min (uU) , p(W)) < u(V) < max (uU), p(W))
with equality if and only if W) and p(W) are equal.

ProOOF. The first identity in the statement is evident, whereas the second identity
in the statement follows from a general fact as stated in [Stal Tag 0B38]. It remains to
prove the the statement Let us now assume that U/, V, and W are all nonzero. By the
statement we have

(V) = deg(V) _ deg(U) + deg(W)

rk(V) rk(U) + k(W)
If u(U) and p(W) are not equal, then p(V) must lie between p(U) and (V). Otherwise, we
find p(Uf) = p(V) = p(W). .
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Lemma 3.3.5. Let M and N be free modules over a ring R of rank r and r'. There exists a
canonical isomorphism

/\rr’(M ®R N) o /\T(M)@Jr’ ®R /\T‘/(N)(X)T’.
PROOF. Let us choose bases (m;) and (n;) for M and N, respectively. We have an
isomorphism of rank 1 free R-modules
AT (M ®@p N) ~ AT (M)®" @ A" (N)® (3.9)

which maps A(m; ® n;) to (Ami)®" @ (An;j)®". Tt suffices to show that this map does not
depend on the choices of (m;) and (n;). Take an invertible r x r matrix o = (ay;) over R.

Then we have
/\ (Z apim; @ nj> = det(a)r’ /\(mZ ®nj),
(A(Senm))” o (An)” =t (Am) o (An) "

Hence \(Y apimi @ n;) maps to (A an.imi))®" @ (An;)®" under (3.9). Tt follows that
the map (3.9) does not depend on the choice of (m;). By symmetry, the map (3.9) does not
depend on the choice of (n;) either. Therefore we deduce the desired assertion. g

Proposition 3.3.6. Let V and W be nonzero vector bundles on Z. Then we have

deg(V @0, W) = deg(V)rk(W) + degOWV)rk(V) and puw(V @0, W) = pu(V) + p(WV).

PROOF. Since we have rk(V ®p, W) = rk(V)rk(W), the first identity is straightforward
to verify by Lemma [3.3.5] The second identity then immediately follows. O
Lemma 3.3.7. The cohomology group H°(Z,0y) is a field.

PROOF. Let K(Z) denote the function field of Z, and take an arbitrary element f €
K(Z)*. Then f yields a global section of Oy if and only if the associated Weil divisor Div(f)

on Z is effective. Since every principal divisor on Z induces a line bundle of degree 0, the
Weil divisor Div(f) is effective if and only if it is the zero divisor. We thus find

H(Z,0z)\{0}={feK(Z)":Div(f) =0},
and consequently deduce that H%(Z,0y) is a subfield of K(Z). O
Lemma 3.3.8. Let £ and M be line bundles on Z.

(1) If we have deg(L) > deg(M), there is no nonzero Oz-module map from L to M.

(2) If we have deg(L) = deg(M), every nonzero Oz-module map from L to M is an
isomorphism.

PROOF. Assume that there exists a nonzero Oz-module map s : L — M. Then s
induces a nonzero global section on £Y ®p, M via the identification
Home, (£, M) = H(Z, LY ®0, M). (3.10)
Hence £V ®p, M arises from an effective Weil divisor D on Z by a general fact as stated in
[Stal, Tag 01X0]. We then find
deg(M) — deg(L) = deg(LY ®0, M) >0, (3.11)
and consequently deduce the first statement.

Let us now assume deg(L) = deg(M). By (3.11)) we have deg(LY ®p, M) = 0, which
means that the effective Weil D must be zero. It follows that £ ®, M is trivial, which in

turn implies by (3.10) and Lemma that s is an isomorphism. O
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Proposition 3.3.9. A coherent Oz-module is a vector bundle if and only if it is torsion free.

PROOF. Since Z is integral and regular by construction, the assertion follows from a
general fact as stated in [Stal, Tag 0CC4]. O

Proposition 3.3.10. Let V be a vector bundle on Z, and let VW be a coherent subsheaf of V.
(1) W is a vector bundle on Z.
(2) W is contained in a subbundle W of V with tk(W) = k(W) and deg(W) < deg(W).

PROOF. Since W is evidently torsion free, the first statement follows from Proposition
3.3.90 Hence it remains to verify the second statement. We may assume W # 0, as otherwise
the assertion would be obvious. Let 7 denote the torsion subsheaf of the quotient V/W.
Take W to be the preimage of 7 under the surjection ¥V — V/W. Then W is a torsion
free subsheaf of V with a torsion free quotient, and thus is a subbundle of V by Proposition
In addition, we have W C W and )/NV/W ~ T by construction, and consequently
find k(W) = rk(W) as T has rank 0 for being a torsion sheaf. We also have a nonzero
Oz-module map AKOVIW — ATV )W induced by the embedding W «—— W and in turn
obtain deg(W) < deg(W) by Lemma m O

Remark. The subbundle )7\7 of V that we constructed above is often referred to as the
saturation of YW in V.

Proposition 3.3.11. Let V and W be vector bundles on Z of equal rank and degree. Assume
that W is a coherent subsheaf of V. Then we have V = W.

PROOF. The embedding W «— V induces a nonzero map AXOV)(W) — ATKOV) (D),
which is forced to be an isomorphism by Lemma(3.3.8| Hence at each point in Z the embedding
W —— V yields an isomorphism on the stalks for having an invertible determinant. It follows
that the embedding W —— V is an isomorphism. O

Proposition 3.3.12. Given a vector bundle V on Z, there is an integer dy with deg(W) < dy
for every subbundle W of V.

PRroOOF. If Vis the zero bundle, the assertion is trivial. Let us now proceed by induction on
rk(V). We may assume that there exists a nonzero proper subbundle U of V), as otherwise the
assertion would be obvious. Consider an arbitrary subbundle W of V. Let us set P :=WnNU
and denote by Q the image of VW under the natural surjection ¥V — V/U. Proposition
and the induction hypothesis together imply that P and Q are vector bundles on Z with

deg(P) < dy and deg(Q) < dyy

for some integers dyy and dy, ;4 that do not depend on W. In addition, we have a short exact
sequence

0 > P w Q 0.
Therefore we obtain
deg(W) = deg(P) + deg(Q) < duy + dyy
where the first identity follows from Proposition U

Remark. On the other hand, if V' is not a line bundle on Z, we don’t necessarily have an
integer dj, with deg(W) > dj, for every subbundle W of V. In fact, in the context of the
complex projective line or the Fargues-Fontaine curve, it is known that such an integer d,
never exists if V is not a line bundle.
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We now introduce and study two important classes of vector bundles on Z.
Definition 3.3.13. Let V be a nonzero vector bundle on Z.
(1) We say that V is semistable if we have (W) < (V) for every nonzero subbundle W
of V.
(2) We say that V is stable if we have p(W) < p(V) for every nonzero proper subbundle
W of V.

Remark. Here we don’t speak of semistability for the zero bundle, although some authors
say that the zero bundle is semistable of every slope.

Example 3.3.14. Every line bundle on Z is stable; indeed, a line bundle on Z has no nonzero
proper subbundles as easily seen by Proposition

Proposition 3.3.15. Let V be a semistable vector bundle on Z. FEvery nonzero coherent
subsheaf W of V is a vector bundle on Z with p(W) < u(V).

PROOF. Proposition 3.3.10] implies that W is a vector bundle on Z, contained in some
subbundle W of V with (W) < p(W). We then find (W) < u(V) by the semistability of V,
and consequently obtain the desired assertion. O

Proposition 3.3.16. Let V and W be semistable vector bundles on Z with (V) > u(W).
Then we have Homp, (V, W) = 0.

PROOF. Suppose for contradiction that there is a nonzero Oz-module map f:V — W.
Let Q denote the image of f. Proposition [3.3.15|implies that Q is a vector bundle on Z with

w(Q) < p(W) < u(V). (3.12)
Let us now consider the short exact sequence

0 — s ker(f) —s VL300
We have ker(f) # 0 as Q and V are not isomorphic by (3.12)). We thus obtain u(ker(f)) < u(V)
by the semistability of V and consequently find ©(Q) > u(V) by Proposition thereby
deducing a desired contradiction by (3.12)). O

Remark. The converse of Proposition does not hold in general. For example, if the
Picard group of Z is not isomorphic to Z, we get a nontrivial degree 0 line bundle £ on Z
and find Homp,(Oz, L) = 0 by Lemma On the other hand, if Z is taken to be the
complex projective line or the Fargues-Fontaine curve, then the converse of Proposition [3.3.16]
is known to hold.

Proposition 3.3.17. Let V be a vector bundle on Z such that V&™ is semistable for some
n > 0. Then V is semistable.

ProoF. Consider an arbitrary nonzero subbundle W of V. We may regard W®" as a
subsheaf of V®". Then we have u(W®") < u(V®") by Proposition [3.3.15, and in turn find

pW) = p(WE) fn < u(VE™) /n = p(V)
by Proposition [3.3.6 ]
Remark. It is natural to ask if the tensor product of two arbitrary semistable vector bundles
on Z is necessarily semistable. If Z is a regular proper curve over a field of characteristic 0,
this is known to be true by the work of Narasimhan-Seshadri [NS65]. In addition, we will

see in Corollary that this is true in the context of the Fargues-Fontaine curve. However,
this is false if Z is defined over a field of characteristic p, as shown by Gieseker [Gie73].



3. VECTOR BUNDLES 151
Proposition 3.3.18. Let V and W be semistable vector bundles on Z of slope A.

(1) Every extension of W by V is a semistable vector bundle on Z of slope .

(2) For every f € Homp,(V, W), bothker(f) and coker(f) are either trivial or semistable
vector bundles on Z of slope .

PRrROOF. Let £ be a vector bundle on X which fits into a short exact sequence
0 1% y £ w » 0.

By Proposition we find p(€) = A. Take an arbitrary subbundle F of £, and denote by
F' its image under the map £ — W. By construction we have a short exact sequence

0 —— VNF F F' > 0.
In addition, Proposition implies that ¥V N F and F’ are vector bundles on Z with
p(VNF)<pV)=A  and  p(F) <pW) =\
We then find pu(F) < A = u(€) by Proposition thereby deducing the statement

It remains prove the statement The assertion is trivial for f = 0. We henceforth
assume f # 0, and denote by Q the image of f. Then we have a short exact sequence

0 —— ker(f) >V > Q > 0,
Moreover, Proposition implies that ker( f) and Q are vector bundles on Z with
deg(ker(f)) < (V) -rk(ker(£) = A-rk(ker(f))  and  p(@) < p(W) = A

Hence by Proposition we find
deg(ker(f)) = A - rk(ker(f)) and w(Q) = A.

Since every subbundle of ker(f) is a coherent subsheaf of V), the first identity and Proposition
3.3.15| together imply that ker(f) is either zero or semistable of slope .

Meanwhile, Proposition [3.3.10| implies that Q is contained in a subbundle Q of W with
rk(Q) = rk(é) and deg(Q) < deg(é). (3.13)
Then by the semistability of V we obtain
A=n(Q) < p(Q) < p(W) =\,
and consequently find that the inequality in (3.13)) is indeed an equality. Hence Proposition

3.3.11] yields Q = é, which in particular means that Q is a subbundle of W.
Let us now assume that coker(f) is not zero. Since we have a short exact sequence

0 o s W coker(f) —— 0,

our discussion in the preceding paragraph and Proposition together imply that coker(f)
is a vector bundle on Z with p(coker(f)) = A. We wish to show that coker(f) is semistable.
Take an arbitrary subbundle R of coker(f), and denote by R’ its preimage under the map
W — coker(f). Then we have a short exact sequence
0 Q > R/ > R > 0.
In addition, Proposition [3.3.15| implies that R’ is a vector bundle on Z with
1(R) < W) = A = p(Q).

Hence we find u(R) < u(Q) = A = p(coker(f)) by Proposition and consequently deduce
that coker(f) is semistable as desired. O
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Our final goal in this subsection is to show that every vector bundle on Z admits a unique
filtration whose successive quotients are semistable vector bundles with strictly increasing
slopes.

Definition 3.3.19. Let V be a vector bundle on Z. A Harder-Narasimhan filtration of V is
a filtration by subbundles

0=VoCViC---CV,=V
such that the successive quotients V;/Vy, -+, V,/V,—1 are semistable vector bundles on Z
with N(VI/VO) > > :U’(Vn/vn—l)'

Lemma 3.3.20. Given a nonzero vector bundle V on Z, there exists a semistable subbundle
Vi oof V with p(V1) > p(V) and u(Vy) > p(U) for every nonzero subbundle U of V/Vi.

PROOF. For an arbitrary nonzero subbundle W of V, we have 0 < rk(W) < rk(V) and
deg(W) < dy for some fixed integer dy given by Proposition |3.3.12] This implies that the set

S:={qe€Q:q=u(W) for some nonzero subbundle W of V }

is discrete and bounded above. In particular, the set S contains the largest element A.

Let us take V; to be a maximal subbundle of V with p(V;) = A. By construction we have
p(V1) > pu(V). Moreover, since every subbundle of V) is a coherent subsheaf of V, Proposition
and the maximality of A together imply that V; is semistable. Let us now consider
an arbitrary nonzero subbundle U of V/V;, and denote by U its preimage under the natural
surjection ¥V — V/V;. Then we have a short exact sequence

0 %1 u u > 0.

In addition, the maximality of A\ and V; implies p(U) < A = p(Vi). Therefore we find
p(U) < p(V1) by Proposition thereby completing the proof. O

Remark. Our proof above relies on the fact that the group Z is discrete. However, as noted in
[Ked17, Lemma 3.4.10], it is not hard to prove Lemma without using the discreteness
of Z. As a consequence, we can extend all of our discussion in this subsection to some other
contexts where the degree of a vector bundle takes a value in a nondiscrete group such as
Z[1/p]. We refer the curious readers to [Ked17, Example 3.5.7] for a discussion of such an
example.

Lemma 3.3.21. Let V be a nonzero vector bundle on Z. Assume that V admits a Harder-
Narasimhan filtration

O=YoCViC---CV,=V.
For every semistable vector bundle W on Z with Homep, (W, V) # 0, we have u(W) < u(Vy).

ProOF. Take a nonzero Oz-module map f : W — V, and denote its image by Q.
Since Q is a nonzero coherent subsheaf of V, there exists the smallest integer ¢ > 1 with

Q CV;. Then we find that f induces a nonzero Oz-module map W 1, Vi = Vi/Vi—1, and
consequently obtain

pW) < u(Vi/Vie1) < p(Vr)
where the first inequality follows by Proposition [3.3.16 g
Remark. Lemma [3.3.21] does not hold without the semistability assumption on W. For

example, if we take W := V & L where L is a line bundle on Z with u(£) > u(V), we find
Homp, W, V) # 0 and p(W) > p(V).
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Theorem 3.3.22 (Harder-Narasimhan [HNT5]). Every vector bundle V on Z admits a
unique Harder-Narasimhan filtration.

PROOF. Let us proceed by induction on rk(V). If V is the zero bundle, the assertion is
trivial. We henceforth assume that V is not zero.

We first assert that V admits a Harder-Narasimhan filtration. Lemma [3.3.20] yields a
semistable subbundle V; of V with (V1) > u(U) for every nonzero subbundle U of V/V;. By
the induction hypothesis, the vector bundle V/V; on Z admits a Harder-Narasimhan filtration

O:ulC"'Cun:V/Vl. (3.14)

For each ¢ = 2,--- ,n, let us set V; to be the preimage of U; under the natural surjection
V — V/V;. Then we find

Vi/Vifl = Z/{i/ui,1 foreachi=2,---,n.

Moreover, by construction we have (V1) > u(Us) whenever the filtration (3.14)) is not trivial.
Therefore V admits a Harder-Narasimhan filtration

0=VoCWVIC--CV,=V. (3.15)

It remains to show that (3.15)) is a unique Harder-Narasimhan filtration of V. Assume
that V admits another Harder-Narasimhan filtration

O=Wo Wi C---CW, =V. (3.16)

Since W) is a nonzero subbundle of V, Lemma [3.3.21 yields u(W;) < p(Vi). Then by sym-
metry we obtain p(V;) < u(Wi), and thus find p(V1) = p(Wr). Now we have

p(Wh) = p(V1) > p(Vo/V1) = pla/Us)

unless the filtration is trivial. It follows by Lemma that Homp, W1, V/V1)
vanishes. We then find W; C V; by observing that the natural map W; < V — V/V; must
be zero. By symmetry we also obtain V1 C W, and consequently deduce that V; and Wy are
equal. The filtration then induces a Harder-Narasimhan filtration

0:W1/V1C--'W1/V1:V/V1, (3.17)

which must coincide with the filtration (3.14) by the induction hypothesis. Since each W; is
the preimage of W;/V; under the natural surjection V — V/V;, we deduce that the filtrations
(3-15) and (3.16|) coincide. O

Remark. A careful examination of our proof shows that Theorem is a formal conse-
quence of Proposition [3.3.4] and Proposition In other words, Theorem read-
ily extends to any exact category ¢ equipped with assignments rky : ¢ — Z>¢ and
degy : € — Z that satisfy the following properties:

(i) Both rkey and degy, are additive on short exact sequences.

(ii) Every monomorphism f : A — B in ¥ factors through some admissible monomor-

phism f : A — B with kg (A) = rkg (A) and degy (A) < degy, (A).
Such a category is called a slope category.

We will see that the category of vector bundles on the Fargues-Fontaine curve is closely
related to two other slope categories, namely the category of isocrystals and the category of
filtered isocrystals. This fact will be crucial for studying the essential image of the crystalline

functor in
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3.4. Semistable bundles and unramified covers

In this subsection, we construct semistable vector bundles on the Fargues-Fontaine curve
by studying its unramified covers.

Definition 3.4.1. Let h be a positive integer.

(1) We denote by E}, the degree r unramified extension of Q,, and define the degree h
unramified cover of X to be the natural map

s X X Spec (Qp) Spec (Eh) — X.
(2) We write X, := X Xgpec(Q,) SPec (Er) and Py := @B“’ ="
n>0

Lemma 3.4.2. Letr and n be integers with r > 0. Given a positive integer h and a nonzero
homogeneous element f € P, we have a canonical isomorphism

B[1/f]¥ =" ®q, B, = B[1/f]

PRrROOF. The group Gal(E}/Q)) is cyclic of order h, and admits a canonical generator -y
which lifts the p-th power map on F,.. Moreover, for every n € Z there exists an action of

Gal(E}/Q,) on B[l/f]‘prh:pnh such that « acts via p~"¢". We thus find

B[l/f]w:pn _ <B[1/f]@rh_pnh)Gal(Eh/Qp)

and consequently deduce the desired isomorphism by the Galois descent for vector spaces. [

rh:pnh

)

Proposition 3.4.3. For every positive integer h, we have a canonical isomorphism
Xh = PI‘Oj (Ph) .

Proor. By Lemma we have B¥=P" ®q, En = B#"=P"" for every n € Z, and conse-
quently obtain a natural isomorphism

X}, = Proj (P ®Qp Eh) = Proj @ Bcph:pnh ~ Proj @ B‘Ph:pn

n>0 n>0
as desired. 0

We invoke the following generalization of Corollary [3.1.10| without proof.

Proposition 3.4.4. Let h and n be positive integers. FEvery nonzero element f € Be"=r"
admits a factorization

f=ffo  withf; e BT

where the factors are uniquely determined up to E,f -multiple.
Remark. Let us briefly sketch the proof of Proposition The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law ppr over Of, with
(D] prr () = pt + #" . Denote by Grr the associated p-divisible group over Og,. By means of
the logarithm for Grr, we can construct a group homomorphism

. ; h_

logh : GLT(OF) = ELHGLT(OF/mlFOF) — B¥Y 7P,

(2

It is then not hard to extend the results from and § with logy,, Grr(OF), ",

#", Py, and X}, respectively taking the roles of log, 1 + mp, ¢, ¢, P, and X. We refer the
readers to [Lur, Lecture 22-26] for details.
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Definition 3.4.5. Let d and h be integers with h > 0. We define the d-th twist of Ox, to be
the quasicoherent Ox, -module O (d) associated to Pp(d) := GB B?"="""" where we identify

nez
X, = Proj (Pp) as in Proposition
Lemma 3.4.6. Let h be a positive integer. For every d € Z, the Ox, -module Op(d) is a line
bundle on X, with a canonical isomorphism O (d) = Oy (1),

PROOF. The assertion follows from Proposition by a general fact as stated in [Stal,
Tag 01MT)]. O

Definition 3.4.7. Let h be a positive integer.

(1) For every positive integer r, we define the degree r unramified cover of X}, to be the
natural map

Trhh @ Xrh & Xp XSpec (Ey) Spec (Erp) — Xp.
(2) For every pair of integers (d,r) with r > 0, we write Op(d,r) := (7r4,1)+Orn(d).

(3) For every nonzero homogeneous f € P, we denote by Dp(f) the preimage of the
open subscheme D(f) := Spec (B[1/f]¥=') € X under m.

Lemma 3.4.8. Let h be a positive integer.

(1) The scheme X}, is covered by open subschemes of the form Dy (f) for some nonzero
homogeneous element f € P.

(2) Given two nonzero homogeneous f and g in P, we have Dy(f) N Dy(g) = Dn(fg).
PROOF. Both statements evidently hold for h = 1 as we have X; = X = Proj (P). The
assertion for the general case then follows by the surjectivity of . O
Proposition 3.4.9. Let d, h, and r be integers with h,r > 0.
(1) The Ox, -module Oy(d,r) is a vector bundle on X}, of rank r.
(2) Given a nonzero homogeneous f € P, there exists a canonical identification

On(d,r) (Dn(f)) = B[1/f]*

PROOF. The first statement follows from Lemma [3.4.6] since the morphism 7, 5, is finite
of degree r. The second statement is obvious by construction. O

hr:pd

Proposition 3.4.10. Let d and r be integers with r > 0. Given arbitrary positive integers h
and n, there exists a natural identification

(Thnp) *On(d, 1) = Opp(dn, ).

PROOF. Let f € P be an arbitrary nonzero homogeneous element. Since Dy, (f) is the
inverse image of Dj,(f) under 7y, 5, we use Lemma and Proposition to find

(%) On(d. ) (Dpn(£)) = On(d,7) (Di(f)) @ s B/

= B/ 0 o (BUSP 2o, B)
~ B/ {17~ @q, B

= B[/ 17" "

= Opn(dn, ) (Din(f)-

The desired assertion now follows by Lemma |3.4.8 U
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Proposition 3.4.11. Let d and r be integers with v > 0. Given arbitrary positive integers h
and n, we have a natural isomorphism

Op(dn,rn) = Op(d,r)®".
Proor. By Proposition |3.4.10| we obtain a natural isomorphism
On(dn, ™) = (Thrn) s (Thor hr )« Ohnr (A1) = (T p) s (Thnr b )+ (Thr v ) O (d).-
Then we use the projection formula to find
(T b )« (T i) Onre (d) 22 (Thir pr )+ O,y @0, Onr(d) 2 OFT @0y, Opr(d) = Opy(d)®7,
and consequently deduce the desired assertion. O
Proposition 3.4.12. Let h be a positive integer. We have a canonical isomorphism
On(dy,r1) ®0x, Op(da,12) = Op(dyra + dary, m172)

for all integers dy,do, 71,70 wWith 11,79 > 0.

PROOF. Let g and [ respectively denote the greatest common divisor and the least common
multiple of 71 and ra. Since r;/g and ra/g are relatively prime integers, the fields E,,; and

E,,; are linearly disjoint finite extensions of Eg, with E,. ,FE,,, = Ej,. Hence we have an
identification Ej, = E, ) ® Egn E,,n, which gives rise to a cartesian diagram

Tih,roh

Xin Xroh
ﬂlh,rlhl lT"TQh,gh
Trih,gh
Xrlh Xgh

where all arrows are finite étale. Let us now write 7} := 71 /g and % := r3/g. Then we find
Ogn(d1,m1) ®0x , Ogn(da, ) = (Wringn)+(Orin(dr)) ®ox , (Trsh.gh)«(Orsn(da))

(Tih,gh )« ((ﬂ'lh,rlh)*orlh(dl) ®0x,, (Wlh,rzh)*orgh(d2)>
(Tih,gh )+ (Olh(dlrll) ®0x,, Om(dzré))

= (mh,gh)*olh(dlri + darh)
= Ogp(dy7] + darh, ri15)

1

12

where the isomorphisms respectively follow from the Kiinneth formula, Proposition [3.4.10)
and Lemma We thus use the projection formula, Proposition [3.4.10] and Proposition
[3.4.11] to obtain an identification

Tghh)+ (Ogh(dh?”/l) ®ox,, Ogh(d%?“é)@g)
ah,n)sOgn(diry + dorh, r175)

p(diry 4 dorhy, grire)®9

n(diry + dara, r172),

thereby completing the proof. O
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Proposition 3.4.13. Let d and r be ingeters with r > 0. For every positive integer h, there
exists a canonical isomorphism

Oh(d, 7")\/ = Oh(—d, 7“).
PRrOOF. Proposition [3.4.11 and Proposition |3.4.12| together yield a natural map

v
On(d,r) ®ox, On(—d,r) = (’)??22 o (’)?@Z ®ox, (O%;) — Oy,

where the last arrow is given by the trace map. It is straightforward to verify that this map
is a perfect pairing, which in turn yields the desired isomorphism. O

Proposition 3.4.14. Let d and r be integers with r > 0.

(1) The vector bundle O(d,r) := O1(d,r) on X is semistable of rank r and degree d.
(2) If d and r are relatively prime, then the bundle O(d,r) is stable.

PROOF. Proposition and Proposition together yield a natural isomorphism
O(d,r)®" = O(dr",r") = O(d)®"". (3.18)

Moreover, we find deg ((’)(d)@”r) = dr"” by Proposition Therefore it follows by Proposi-
tion[3.3.6|and Proposition that O(d, r) is of rank r and degree d. Furthermore, since O(d)
is stable as noted in Example we find by Proposition that O(d)®"" is semistable,
and consequently deduce by (3.18) and Proposition that O(d, r) is semistable as well.

Let us now assume that d and r are relatively prime. Take an arbitrary nonzero proper
subbundle V of O(d,r). We have u(V) # d/r as rk(V) is less than rk(O(d,r)) = r. Hence we
find (V) < A by the semistability of O(d,r), thereby deducing that O(d,r) is stable. O

Remark. Proposition readily extends to Oy (d,r) and X, for every positive integer h,
as it turns out that X is a complete algebraic curve. In fact, extending the remark after
Proposition it is not hard to show that all results from remain valid with ", Py,
Xpn, and Op(d) respectively in place of ¢, P, X, and O(d); in particular, X} is a Dedekind
scheme whose Picard group is isomorphic to Z.

Definition 3.4.15. Let A = d/r be a rational number, written in a reduced form with r > 0.
We refer to O(\) := O1(d, r) as the canonical stable bundle on X of slope A.

Proposition 3.4.16. Let A be a rational number.

(1) There exists a canonical isomorphism O(N)Y = O(=\).

(2) Given a rational number X', we have a natural isomorphism
O(\) ®ox O(N) =2 O(A+ X)o"

for some positive integer n.

PROOF. The first statement is a special case of Proposition [3.4.13] The second statement
follows from Proposition and Proposition [3.4.12] O

Remark. By the remark after Proposition for every positive integer h we can define
the canonical stable bundle O () of slope A on X}, and extend Proposition [3.4.16| to Op ().
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3.5. Classification of the vector bundles

In this subsection, we describe a complete classification of vector bundles on the Fargues-
Fontaine curve. We invoke the following technical result without proof.

Proposition 3.5.1. Let A be a rational number.

(1) A vector bundle on X is semistable of slope \ if and only if is isomorphic to O(\)®"
for some n > 1.

(2) If we have \ > 0, the cohomology group H'(X,O()\)) vanishes.

Remark. The second statement is relatively easy to prove. Let us write A = d/r where d and
r are relatively prime integers with » > 0. As remarked after Proposition [3.4.14] Theorem
is valid with O,(d) and X, respectively in place of O(d) and X. Hence for A > 0 we find

HY (X, 0\) = H'(X, (7,).0,(d)) = H'(X,, 0,(d)) = 0.

On the other hand, the first statement is one of the most technical results from the original
work of Fargues and Fontaine [FF18]. Here we can only sketch some key ideas for the proof.
We refer the curious readers to [FEF14l §6] for a good exposition of the proof.

The if part of the first statement is immediate by Proposition [3.4.14] In order to prove the
converse, it is essential to simultaneously consider all unramified covers of X; more precisely,
we assert that every semistable vector bundle V on X}, of slope A is isomorphic to Op(\)®"
for some n > 1, where we set Op(\) := Op(d,r). The proof of this statement is given by a
series of dévissage arguments as follows:

(a) We may replace V with (m,p,,)*V to assume that A is an integer; this reduction is
based on the identification (w4 )« (Trnr)*On(A) = Op(d)®" given by Proposition
and the fact that (m,,)*V is semistable of slope d as seen by an elementary
Galois descent argument based on Theorem

(b) We may replace V by V(=A) := V ®oy, Op(—A) to further assume A = 0; this
reduction is based on the identification Op(\) = Oy ®0x, 0), and the fact that
V(—A) is semistable of slope 0 as easily seen by Proposition

(c) With X\ = 0, it suffices to prove that H°(X},V) does not vanish; indeed, any nonzero
global section of V gives rise to an exact sequence of vector bundles on X},

0 — Oy, 1% W > 0
where W is semistable of slope 0 by Proposition[3.3.18] thereby allowing us to proceed
by induction on rk(V) with the identification Exté)xh (On, Op) & HY (X}, Ox, ) = 0.

(d) The proof further reduces to the case where V fits into a short exact sequence

0 —— Op(—=1/n) — V —— Op(1) —— 0
with n = rk()) — 1; this reduction involves a generalization of Grothendieck’s argu-

ment for the classification of vector bundles on the projective line.

(e) The exact sequence above turns out to naturally arise from p-divisible groups, as we
will remark after Example [3.5.4} as a consequence the assertion eventually follows
from some results about period morphisms on the Lubin-Tate spaces due to Drinfeld
[Dri76], Gross-Hopkins [GH94], and Laffaille [Laf85].

Corollary 3.5.2. The tensor product of two semistable vector bundles on X is semistable.

PRroOF. This is an immediate consequence of Proposition and Proposition O
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Theorem 3.5.3 (Fargues-Fontaine [FF18]). Every vector bundle ¥V on X admits a unique
Harder-Narasimhan filtration

0=VoCWVIC---CV,=V,

which (noncanonically) splits into a direct sum decomposition
n
Y~ Pom)em
i=1
where we set N\; :== u(V;/Vi—1) for eachi=1,--- n.

PrOOF. Existence and uniqueness of the Harder-Narasimhan filtration is an immediate
consequence of Theorem [3.3.22] Hence it remains to prove that the Harder-Narasimhan
filtration splits. Let us proceed by induction on n. If we have n = 0, then the assertion is
trivial. We henceforth assume n > 0. By construction each successive quotient V;/V;_1 is
semistable of slope \;. Hence Proposition yields an isomorphism

Vi/Vie1 = O(\;)®m foreachi=1,---,n (3.19)
where m; is a positive integer. Moreover, by the induction hypothesis, the filtration
0=V CV1 C---CVp_1

splits into a direct sum decomposition
n—1
Viei ~ P o). (3.20)
i=1

Hence it suffices to establish the identity
Exty, (V/Vi-1,Va-1) = 0. (3.21)
For each i = 1,--- ,n, Proposition yields an identification
Exté, (O(An), O(Ni)) =2 H (X, 0(N) ®ox O(An)Y) = HY (X, 0N — An)®™)
where n; is a positive integer. Since we have \; > A\, for each i = 1,--- ,n, we find
Ext%gx (O(Mn),0(N)) =0 foreachi=1,---,n

by Proposition [3.5.1 Therefore we deduce the identity ([3.21]) by the decompositions ([3.19)
and (]3.20)), thereby completing the proof. [l

Remark. Theorem [3.5.3]is an analogue of the fact that every vector bundle W on the complex
projective line IP’}C admits a direct sum decomposition

l
W= P Opi ()™ with d; € Z.
j=1

The only essential difference is that semistable vector bundles on X may have rational slopes,
whereas semistable vector bundles on ]P’(lc have integer slopes. This difference comes from the
fact that we have H'(X,O(—1)) # 0 and H'(PL, (’)P}C(—l)) = 0 as remarked after Theorem
B.2.9

It is worthwhile to mention that an equivalent result of Theorem [3.5.3| was first obtained
by Kedlaya [Ked05]. In fact, Kedlaya’s result can be reformulated as a classification of vector
bundles on the adic Fargues-Fontaine curve, which recovers Theorem by Theorem
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Example 3.5.4. Let us write W(F,) for the ring of Witt vectors over F,, and Kj for the
fraction field of W (FF,). Let N be an isocrystal over K, which admits a decomposition

N ~ @N )& with \; € Q. (3.22)
We assert that N naturally gives rise to a vector bundle £(N) on X with an isomorphism

@ O(\) ™. (3.23)

We may regard Kg as a subring of B under the identification

Ko = W(E)1/p) = { Y lealp € Ail1/p] : e €F, |

Then by construction ¢ restricts to the Frobenius automorphism of K, and thus acts on N
and NV via the Frobenius automorphisms ¢y and ¢yv. Hence we get a graded P-module

P(N) := (N &, B)*".
n>0

Let us set £(N) to be the associated quasicoherent sheaf on X, and take an arbitrary
nonzero homogeneous element f € P. In addition, for each i = 1,--- ,n, we write \; := d;/r;
where d; and r; are relatively prime integers with r; > 0. By construction we have

E(N)(D(f)) = (NY @, B[1/f])*" = Homp, (N, Ko) ®x, B[1/f])*~

_ (3.24)
= Homp, (N, B[1/f])*~".
Moreover, since each N();) admits a basis (¢’ (n)) for some n € N()\;) with ¢"i(n) = pin,
there exists an identification
_ i —pdi ~
Homp, (N (Ao), B[1/f])?~! = B[1/f]7"="" = O(X)(D(f)) (3.25)

where the last isomorphism follows from Proposition As f € P is arbitrarily chosen,
we obtain the isomorphism (3.23) by (3.22), (3.24) and (3.25)).

Remark. As noted in Chapter [[I, Theorem every isocrystal over K\ admits a direct
sum decomposition as in (3.22)). Hence by Theorem and Example we obtain an

essentially surjective functor
& p—Modg, — Bunx

where p—Modg, and Buny respectively denote the category of isocrystals over K and the
category of vector bundles on X. Furthremore, if we have 0 < A\; <1 for each i = 1,--- ,n,
then Proposition |2.3.18| from Chapter [[I) yields a p-divisible group G over F, with

5( 1/p @ (’) GamZ

However, the functor £ is not an equivalence of categories; indeed, for arbitrary rational
numbers k and A with k£ < A, we have

Homgy_nody, (N(£),N(A)) =0 and  Homo, (E(N(k)),E(N(N))) # 0.
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4. Applications to p-adic representations

In this section, we prove some fundamental results about p-adic representations and period
rings by exploiting our accumulated knowledge of the Fargues-Fontaine curve. The primary
references for this section are Fargues and Fontaine’s survey paper [FF12] and Morrow’s notes
[Mor].

4.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with the absolute Galois group 'k,
the inertia group Ik and the residue field k. We also write W (k) for the ring of Witt vectors
over k, and K for its fraction field.

Proposition 4.1.1. The tilt of Cx is algebraically closed.

PROOF. Let f(x) be an arbitrary monic polynomial of degree d > 0 over (CZ(. We wish to
show that f(z) has a root in (C'k. Take an element m in the maximal ideal of (’)Ck;( . We may

replace f(x) by m™®f(z/m™) for some sufficiently large n to assume that f(x) is a polynomial
over O(Ct;( . Moreover, we may assume d > 1 since otherwise the assertion would be obvious.

Let us now write
f(l‘) =z + Clxdil + -ty with ¢; € O(Cz{
Proposition and Proposition from Chapter together yield an identification
O(C?( = lln O(CK/pO(CK' (4'1)

c—cP

Write (¢;5,) for the image of each ¢; under this isomorphism, and choose a lift ¢;, € Oc¢, of
each ¢; . In addition, for each n > 0 we set

fn(x) = xd+cl7nxd_1 +- -+ can and fn(x) = :L'd—i—c’f;xd_l + i Can-

Then for each n > 1 we have

p
faoa(@P) =a® +cf 2Pl = (xd +oernr® 4+ Cd,n) = fu(z)P.  (42)

n
Moreover, since Cfc is algebraically closed as noted in Chapter [[, Proposition [3.1.5, each
fn(x) admits a factorization

falz) = (z —an1) - (x — anq) with oy, ; € Ocy -

Let us denote by @, ; the image of each «, j under the natural surjection Oc, — Oc,. /pOc -
For each @, ; with n > 1 we obtain f,,—1 (&, ;*) = fu(an;)? =0 by (4.2), and in turn find

fn_l(afl,7j> = (afL,j —Qn-11) (afz,j — an-1,4) € pOgy-

P
b
obtain andpd = ozn_lﬁlpdfl by Lemma from Chapter It follows that there exists

— an_l,jnflpd_l for all n > 1. Let us now set

Hence for each o, j with n > 1 we have o, ; — a1, € p/ dO(cK for some [, and consequently

a sequence of integers (j,) with ag ;,”
o= (an+d_1’jn+d71pd71). Then under the identification (4.1)) we find

f(a) = (fn (Oén—kd—l,jn_;,_d_lpd_l)) = (fn+d—1 (Oén+d—1,jn+d_1)) =0
where the second identity follows by . O

Remark. Our proof above readily extends to show that the tilt of an algebraically closed
perfectoid field is algebraically closed.
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For the rest of this section, we take F' = (Cz{ and regard Cx as an untilt of /. We also

fix an element p’ € Op with (pb)tj = p and set £ := [p’] — p € Aipe. In addition, we choose a
valuation vp on F with vp(p’) = 1.

Proposition 4.1.2. Let ¢ be an element in Op with e = 1 and (s:l/p)jj # 1.
(1) We have e € 1 +mj,.

(2) The element t :=log(e) € B¥=P is a prime in P, and gives rise to a closed point co
on X with the following properties:

(i) The residue field at oo is naturally isomorphic to C.
(i) The completed local ring at oo is naturally isomorphic to BJ'R.

PROOF. The first statement is an immediate consequence of Lemma [2.2.17] from Chapter
[11 (or the proof of Proposition . We then observe by Proposition that t = log(e)
vanishes at an element y., € Y represented by Cg, and consequently deduce the second
statement from Proposition [2.4.7] and Theorem [2.4.8] O

Proposition 4.1.3. There exists a natural isomorphism

By = 1im B/ ker(fc,, (4.3)
J

which induces a topology on B:{R with the following properties:

(i) The subring A of BCTR 15 closed.
(11) The map Oc,[1/p] : Aint[1/p] - Ck induced by Oc, is continuous and open with
respect to the p-adic topology on Cg .
(iii) The logarithm on 1+ mp induces a continuous map log : Zy(1) — Bl under the
natural identification Zp(1) = lim pye (K) = {e€Op:f=1}.
(iv) The multiplication by any uniformizer yields a closed embedding on B$R.

(v) The ring Bl is complete.

PROOF. The natural isomorphism (4.3)) is given by Proposition Let us equip B('f

with the inverse limit topology via (4.3). The property |(ii)| follows from Proposition [1.2.16
and the fact that 0c, [1/p] extends to Oc, . The property is evident by Proposition

Let us now establish the property Recall that we may regard Ajn¢[1/p] as a subring

of B:{R in light of Corollary [2.2.11| from Chapter Proposition implies that Aj,¢ is
complete with respect to all Gauss norms. Moreover, by Example we have [¢] , <1

for all p € (0,1), and consequently find that every &-adically Cauchy sequence in Ajy¢ is also
Cauchy with respect to all Gauss norms. We then deduce the assertion by the fact that &

generates ker(G/C;) as noted in Corollary

It remains to verify the properties and We find by Proposition that
ker(G/(c;) = ¢B is closed in B, and in turn deduce that ker(G/(c;)j = ¢IB is closed in B for
each 7 > 1. Hence the property follows by the fact that every uniformizer of B(;FR is a
unit multiple of £ as noted in Proposition In addition, we find by the completeness of B
that B/ ker(O/(C;)j is complete for each j > 1, and consequently obtain the property |(iv)] O

Remark. Proposition proves Proposition [2.2.16] from Chapter [T} Our proof does not
rely on any unproved results such as Proposition [2.4.1] Proposition or Proposition |3.5.1
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We henceforth fix e € 1+ m}, t € B=P and oo € |X| as in Proposition We also
write BT for the closure of Aj[1/p] in B. In addition, for every p € (0,1) we denote by B,

the closure of Aj¢[1/p] in By, ).

Lemma 4.1.4. Let V be a normed space over Q,, and let ffz denote the p-adic completion
of the closed unit disk Vi in V. The completion of V' with respect to its norm is naturally
isomorphic to Vy[1/p].

PROOF. Since p is topologically nilpotent in Q,, we have a neighborhood basis for 0 € V'
given by the sets p™ V| for n > 0. This implies that a sequence ] in Vj is Cauchy with respect to
the norm on V if and only if it is p-adically Cauchy. Hence Vj coincides with the completion
of Vy with respect to the norm on V. The assertion now follows by the fact that every Cauchy
sequence in V becomes a Cauchy sequence in Vj after a multiplication by some power of p. [

Remark. The notion of p-adic completion is not meaningful for V', as we have p"V =V for
all n > 0.

Proposition 4.1.5. Let ¢ be an element in OF. There exists a canonical continuous isomor-
phism

o —

B, = An[[9/81[1/7)
where Aimp] denotes the p-adic completion of Aing[[c]/p].

PRrOOF. By construction, the topological ring Bﬁ; | is naturally isomorphic to the com-

pletion of Ajn¢[1/p] with respect to the Gauss |c|-norm. In light of Lemma [£.1.4] it is thus
sufficient to establish the identification

Asnllel /o) = { £ € AwilL/p] 1 |f) <1}

Since we have |[c]/p|,; = 1, the ring Ain¢[[c]/p] is contained in the set on the right hand side.
Let us now consider an arbitrary element f € Ain¢[1/p] with |f[,; < 1. We wish to show that
f belongs to Ajn¢[[c]/p]. Let us write the Teichmiiller expansion of f as

f= Z[cn]p" + Z[cn]p” with ¢, € Op (4.4)
n<0 n>0
where the first summation on the right hand side contains only finitely many nonzero terms.
For every n € Z we find |c,||c[" < |fligg = 1, or equivalently [c,| < le|™™. Hence for every
n < 0 we have ¢, = ¢ "d, for some d,, € O, and consequently obtain

[enlp™ = [dn] - ([c]/p) ™" € Aunt[[c]/p].
The assertion is now evident by (4.4]). O

Remark. Given two elements ¢,d € Oy with |¢| < |d|, we can argue as above to obtain an
identification

—

Biied) = Aintllcl/p, p/[d]][1/p]

where Ajne[[c]/p, p/[d]] denotes the p-adic completion of Aiu¢[[c]/p, p/[d]]. This is in some sense
reminiscent of our discussion in Example [1.3.13] which shows that for arbitrary positive real
numbers i, j € Z[1/p] the ring By )i |7 coincides with the completion of Aine[1/p, 1/[w]] with

respect to the ideal I generated by [@']/p and p/[w’]. We can use the above identification
to show that the natural map B — B;{R extends to a map B,y — B;{R for any closed
interval [a,b] C (0,1).
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Proposition 4.1.6. We have natural continuous embeddings

+ +
B1/pp - BCI‘IS Bl/p'

PROOF. Let AY.. be the Ajs-subalgebra in Aje[1/p] generated by the elements of the
form £"/n! with n > 0. By definition we have B:;ls = Aeis[1/p], where Ay is naturally iso-
morphic to the p-adic completion of ASHS as noted in Chapter Proposition Moreover,

Proposition [4.1.5 yields natural identifications

By = Auwtll@®P)/pl1/sl and  BY, = Aullp)/p)l1/5)

—_—

where A [[(p°)P]/p] and Aine[[p°]/p] respectively denote the p-adic completions of Ap[[(p°)P]/p]
and Aiy¢[[p°]/p]. Hence it suffices to show

lnf[[( ) ]/pl C Agrls C Aine[[p ]/p] (4.5)
We obtain the first inclusion in (4.5)) by observing

b p
[p ]p = (£+p)p = (p_ 1)' ' Zf' +Z <I'L')>pi1§p ‘ € Agrls
=1

p p
In addition, we find

@:mﬂﬂw:w(m_g Auel[P)/p]  forall n >0

n! n! nl\ p
as p"/n! is an element of Z,, and consequently deduce the second inclusion in . ]
Lemma 4.1.7. Let [a,b] be a closed subinterval of (0,1). There exists some e > 0 with
£l < |15 for every f € Aine[1/p].

PROOF. Let us set [ := —log,(b) and r := —log,(a). Since L is a concave piecewise
linear function as noted in Corollary [2.1.11] its graph on (0,[] should be bounded above by
the line which passes through the points (I, L¢(1)) and (r, L¢(r)). Hence we have

Ls(s) < W(S_l)+£l for all s € (0,1],

and consequently find

—U(Ly(r) — L(1)) _ TLLy(r) +rLy(1)
+ L= .
r—1 r—1
Meanwhile, Proposition yields an integer n with
L(s) = —log, (|f\p,s> > —log,(p™"*) = ns for all s € (0, 00),

and in turn implies lir% L¢(s) > 0. We thus obtain rL¢(l) > IL¢(r), and consequently find

liH(l) ﬁf(s) <

\fly = p 56 < p= /DL O = | g7/t
as desired. ]

Proposition 4.1.8. For every closed interval [a,b] C (0,1), there exists a canonical continu-
ous embedding Bf — B;.

PRrROOF. Lemma implies that every Cauchy sequence in Aj,¢[1/p] with respect to the
Gauss a-norm is Cauchy with respect to the Gauss b-norm. Hence the assertion is evident by
construction. Il
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For the rest of this section, we write Bt = li_rr>1B;r where the transition maps are the
natural injective maps given by Proposition and regard each B; as a subring of B*.
We also regard BY. as a subring of BT in light of Proposition

cris
Proposition 4.1.9. The Frobenius automorphism of Ain[1/p] uniquely extends to an auto-
morphism @ of BT with the following properties:

(i) ¢ and o agree on BT .
+

cris”

(ii) The Frobenius endomorphism of Beis and o+ agree on B

(iii) @ restricts to an isomorphism B} ~ Bf, for every p € (0,1).

PROOF. Let @i, denote the Frobenius automorphism of Ajn¢[1/p]. Then we have

Pinf (Z[Cn]pn> = Z[Cﬁ}pn for all ¢, € Op,

and consequently find

’SOinf(f”pP = |f‘£ for all f € Amf[l/p] and pE (O> 1)
It follows by Lemma [1.2.15] that ¢ uniquely extends to a continuous ring isomorphism
¢f : Bf ~ B;Q, for each p € (0,1). For every closed subinterval [a, b] of (0,1), the restriction
of gozr on B} is a continuous extension of pj,¢, and thus agrees with . Hence we obtain an
isomorphism

+. B —lim Bt ~ 1 + _ B+
" Bt =lim B, ~lim B, = BT.

It is evident by construction that ¢ is an extension of yi,¢ and each B:{ with p € (0,1).
The uniqueness of each cp; implies that ¢™ is a unique extension of ¢;,; with the property
Moreover, the restriction of ¢+ on B;is is a continuous extension of y;,¢, and thus agrees
with the Frobenius endomorphism on B;is by Lemma from Chapter

It remains to verify the property |(i)| of ¢ ™. By construction, both ¢ and ¢t extend ius.
In addition, the property implies that ¢ restricts to an isomorphism

Bt =1lim B} ~lim B}, = B
— P — P
where the transition maps in each limit are the natural inclusions. Since BT is the closure

of Ain¢[1/p] in B, we deduce that this isomorphism agrees with the restriction of ¢ on BT,
thereby completing the proof. O

Remark. Let us give an alternative description of the ring Bt and its Frobenius automor-
phism. We define the Gauss 1-norm on Aju¢[1/p] by

‘Z[Cn]pn)l = itelg(|cn|) for all ¢, € Op.

By construction we have |f|, = lin% | f|, for every f € Ain[1/p], and consequently find that
p—

the Gauss 1-norm is indeed a multiplicative norm. It is then straightforward to verify that
Bt is naturally isomorphic to the completion of Aj,¢[1/p] with respect to the Gauss 1-norm.
Hence we may obtain ¢ as a unique continuous extension of yj,¢ by Lemma [1.2.15

However, we avoid using this description because working with the Gauss 1-norm is often
subtle. The main issue is that the natural map Op — Aj¢[1/p] given by the Teichmiiler
lifts is not continuous with respect to the Gauss 1-norm. In fact, it is not hard to show

liIr(1)|[l—|—c]—1\1:17é0.
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Definition 4.1.10. We refer to the map ' constructed in Proposition as the Frobe-

nius automorphism of BF. We often abuse notation and write ¢ for p* and the Frobenius
endomorphism of Bs.

Proposition 4.1.11. The Frobenius endomorphism of B s injective.

PROOF. Proposition implies that ¢ is injective on Bcr1S7 and in turn yields the
desired assertion as we have Buis = B [1/t] and ¢(t) = pt by Proposition [3.1.11] from
Chapter [[IT}

Remark. Proposition proves Theorem [3.1.13] from Chapter [[TI}
Proposition 4.1.12. We have identities

ﬂ (70 CrlS and ]'/t m QO CI‘IS

n>0 n>0
PROOF. By Proposition [£.1.6] and Proposition [£.1.9] we have
B;r/ppnﬂ =g (B;r/pp) C "(BL,,) C (Bf/p) Bf/pp for every n > 0,

and consequently find

ﬂ B+ ﬂ Bl/ " ﬂ 90 Crls

p=>0 n>0 n>0

The second identity then follows as we have Bes = B [1/t] and ¢(t) = pt by Proposition

3.1.11] from Chapter [[I]] O

Proposition 4.1.13. For every n € Z, we have

BY=r" — (B+)w:p (B+ )w:p"_

Cris

PRrROOF. The first identity is an immediate consequence of Proposition [3.1.11] The second
identity follows from Proposition O

.

Corollary 4.1.14. We have X = Proj GB(BJr )P

cris
n>0

Remark. Corollary [4.1.14]recovers the first definition of the Fargues-Fontaine curve as given
in Chapter [[, Definition [2.1.1

Proposition 4.1.15. There exists a canonical isomorphism B, = B[1/t]¥=!

PROOF. Proposition [1.1.12] and Proposition [£.1.13] together yield a natural identification
B[1/t)*=' = B*[1/t)*=' = B*' = B,

Cris

as desired. O
Corollary 4.1.16. The ring B, is a principal ideal domain.

ProOOF. By construction, the element ¢ induces the closed point co on X. Hence we
have an identification X\ { co } & Spec (B[1/t]¥*~"), and consequently deduce the assertion

by Theorem [2.4:8] O

Remark. Corollary was first proved by Fontaine prior to the construction of the
Fargues-Fontaine curve. Fontaine’s proof was motivated by a result by Berger [Ber08] that
B, is a Bézout ring, and eventually inspired the first construction of the Fargues-Fontaine
curve as we will soon describe in the subsequent subsection.
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4.2. Essential image of the crystalline functor

In this subsection, we describe the essential image of the functor D, using vector bundles
on the Fargues-Fontaine curve. Our discussion will be cursory, and will focus on explaining
some key ideas for studying p-adic Galois representations via vector bundles on the Fargues-
Fontaine curve. Throughout this subsection, let us write U := X\ { oo }.

Proposition 4.2.1. Let M, be a free Be-module of finite rank, and let MJR be a B;{R—lattz’ce
mn MdR = Me ®Be BdR~

(1) There ezists a unique vector bundle V on X with
HOUV)= M,  and Vo =M,

where ljo\o denotes the completed stalk of V at cc.

(2) The vector bundle V gives rise to a natural exact sequence
0 — HY(X,V) — M. ® Mjz — Mgr — HY(X,V) — 0
where the middle arrow maps each (z,y) to x —y.

Remark. The first statement is in fact a standard application of the Beauville-Laszlo theorem
as stated in [BL95] or [Sta, Tag 0BP2|. The second statement then follows as a variant of
the Mayer-Vietoris long exact sequence.

Example 4.2.2. By Proposition and Proposition we have natural identifications
H'(U,0x)= B,  and  Ox. =B,

where @: denotes the completed local ring at oco. Hence by Therem and Proposition
we obtain a natural exact sequence

0 Qp » Be® Bjg — Bar —— 0,
which in turn yields the fundamental exact sequence
0 > Qyp B, » Bar/Bizx —— 0
as described in Chapter [[TI, Theorem

Remark. In fact, the Fargues-Fontaine curve was originally constructed by gluing Spec (B,)
and Spec (B:{R) using the fundamental exact sequence, partially motivated by Colmez’s theory
of Banach-Colmez spaces as developed in [Col02].

Definition 4.2.3. Let N be a filtered isocrystal over K. Let us write rk(N) and deg(N)
respectively for the rank and the degree of N as an isocrystal over Kj.

(1) We define the degree of the filtered vector space Nk, denoted by deg(Ng ), to be the
unique integer d with Fil?(det(Ng)) # 0.
(2) We define the degree of N by
deg®(N) := deg(N) — deg(Nk).
(3) If N is not zero, we define its slope by
R deg® (N
pr () =SB,
rk(N)
Remark. It is straightforward to verify that MF%. is a slope category as remarked after
Theorem [3.3.22] Hence every N € MF%. admits a unique Harder-Narasimhan filtration.
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Example 4.2.4. Let V be a crystalline I'-representation. We wish to show that Dcyis(V)
has degree 0. Proposition |3.2.14] from Chapter implies that det(V) is a crystalline I'-

~

representation with det(Deyis(V')) = Deris(det(V')), and consequently yield
deg®(Deis(V)) = deg®(det(Deris(V))) = deg®(Deris(det(V))).
Hence we may replace V with det(V) to assume dimg, V' = 1.
Let us choose a continuous character 1 : 'y — Q) with V'~ Q,(n). Proposition
and Proposition from Chapter [[T]] together imply that V' is Hodge-Tate with
Dcris(V)K = DdR(V) and gr(DdR(V)) = DHT(V)

Hence Proposition [1.1.13| from Chapter [I11] yields an integer n such that nx™(Ix) is finite. It
follows by Theorem [I.1.8] from Chapter [[I]] that n is the Hodge-Tate weight of V', which in
turn implies deg(Deyis(V) k) = n.

It remains to show that Deis(V) has degree n as an isocrystal. Let us denote by K™
the maximal unramified extension of K in K, and by Kun the p-adic completion of K. We
also write W (k) for the ring of Witt vectors over k, and K I for the fraction field of W (k).

Example “ 2| and Proposition m 3| from Chapter n together imply that V(n) ~ Q,(nx™)
is crystalline with

Dcris(v(n)) = Dcris(v) K Dcris(Qp(n))' (46)
We then find by Example from Chapter that nx"(Ik) is trivial. Moreover, by
construction K is a p-adic field with Ix as the absolute Galois group. Therefore we have

Deis(V(n)) = (V(n) ®q, Beris)'* C (V(1) @q, Beris)* = B = Ky

where the last identification follows from Theorem from Chapter [[T]] It follows by Propo-
sition from Chapter [III) that the Frobenius automorphism of Deis(V(n)) extends to the

Frobenius automorphism of K§", which in turn implies that Deis(V (n)) has degree 0 as an
isocrystal. In addition, as we have ¢(t) = pt by construction, we deduce by Example
from Chapter that Deis(Qp(n)) has degree —n as an isocrystal. The assertion is now
straightforward to verify by the natural isomorphism in MF¥..

Definition 4.2.5. Let N be a filtered isocrystal over K.

(1) We say that N is semistable if we have u®*(M) < p®*(N) for every nonzero filtered
subisocrystal M of N.

(2) We say that N is weakly admissible if it is semistable of slope 0.

(3) We say that N is admissible if it is in the essential image of D yis.

Proposition 4.2.6. Fvery admissible filtered isocrystal over K is weakly admissible.

Remark. The proof of Proposition is mostly an elementary algebra, after replacing
K by the completion of the maximal unramified extension of K in light of the remark af-
ter Proposition |3.2.20| from Chapter Curious readers can find a detailed proof in [BC|
Theorem 9.3.4].

Proposition 4.2.7. Let N be a weakly admissible filtered isocrystal over K, and set
V= (N ®kq Bexis)?~ NFil’(Ng ® Bar).
(1) V is naturally a crystalline Tk -representation with dimg, (V) < dimg, (V).
(2) N is admissible if and only if we have dimg, (V) = dimg,(N).

Remark. We refer the readers to [BC| Proposition 9.3.9] for a complete proof. If N is
admissible, the assertions are evident by Proposition [3.2.18] from Chapter [[I1]
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Proposition 4.2.8. Let N be a filtered isocrystal over K.

(1) There ezists a unique vector bundle F(N) on X with
HO(U, F(N)) 2 (N ®x, Bes)?~ and F(N)ow 2 Fil' (N ©x Bar)

—

where F(N)s denotes the completed stalk of F(N) at co.
(2) We have rk(N) = rk(F(N)), deg®(N) = deg(F(N)) and p*(N) = p(F(N)).
(3) N is weakly admissible if and only if F(N) is semistable of slope 0.

Remark. A complete proof of Proposition may be added later. Here we explain some
key ideas as sketched in [FF18| Lemma 10.5.5 and Proposition 10.5.6].

The first statement follows from Proposition once we verify verify using Theorem
2.3.15| from Chapter [l| that (N ®j¢, Beis)?~ " is a free Be-module with an identification

(N ®ky Baris)?~' @5, Bar = Nk ®k Bar-
The second statement can be obtained by realizing F(N) in a short exact sequence
0 —— F(N) — &E(N) —— T —— 0

where T is a torsion sheaf supposed at co. The third statement is obtained as a special case of
the fact that the functor F preserves the Harder-Narasimhan filtration, which is not hard to
prove by observing that the Harder-Narasimhan filtrations of N and F(IV) are stable under
the natural actions of I'k.

Theorem 4.2.9 (Colmez-Fontaine [CF00]). A filtered isocrystal N over K is admissible if
and only if it is weakly admissible.

PROOF. If N is admissible, then it is weakly admissible by Proposition [£.2.6] Let us now
assume that N is weakly admissible, and set
V.= (N R K, Bcris)<'0:1 N FilO(NK QK BdR)-

In light of Proposition it suffices to show dimg, (V') = dimg, (/). Proposition m
yields a semistable vector bundle F (V) on X of slope 0 with

HO(U, F(N)) 2 (N @K Beris)?™ and  F(N)oo 2 Fil'(Nk @k Bar)
where }"ﬁ\fTw denotes the completed stalk of F(N) at co. Hence by Proposition we
obtain a canonical isomorphism
HY(X,F(N)) 2 (N ®kq Beris)?~ " NFil°(Ng @k Bar) = V.

Moreover, Theorem and Proposition together imply that F (V) is isomorphic to
O%" where we set 7 := dim, (INV), and consequently yields an isomorphism

V= HY(X,F(N)) ~ H(X,0x)" = Q"
by Proposition and Theorem We thus find dimg, (V') = dimg,(N) as desired. [

Remark. While the proof above greatly simplifies the original proof by Colmez-Fontaine
[CF00] and another proof by Berger [Ber08|, these prior proofs contained a number of
important ideas that contributed to the discovery of the Fargues-Fontaine curve.

Corollary 4.2.10. The functor Des is an equivalence between Reprf;S(FK) and the category
of weakly admissible filtered isocrystals over K.

PROOF. This is immediate by Theorem from Chapter [[I] and Theorem [£.2.9] O
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