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CHAPTER I

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a rough idea of what p-adic Hodge theory is about. By
nature, p-adic Hodge theory has two sides of the story, namely the arithmetic side and the
geometric side. We will briefly motivate and describe each side of the story, and discuss how
the two sides are related.

1.1. The arithmetic perspective

From the arithmetic perspective, p-adic Hodge theory is the study of p-adic Galois rep-
resentations. i.e., continuous representations ΓK := Gal(K/K) ! GLn(Qp) where K is a
p-adic field. This turns out to be much more subtle and interesting than the study of `-adic
Galois representations, i.e. continuous representations ΓK ! GLn(Q`) with ` 6= p. In the
`-adic case, the topologies on ΓK and Q` do not get along with each other very well, thereby
imposing a huge restriction on the kinds of continuous representations that we can have. In
the p-adic case, on the other hand, we don’t have this “clash” between the topologies on ΓK
and Qp, and consequently have much more Galois representations than in the `-adic case.

Remark. Our definition of p-adic field allows infinite extensions of Qp. For a precise defini-
tion, see Definition 3.1.1 in Chapter II.

In this subsection, we discuss a toy example to motivate and demonstrate some key ideas
from the arithmetic side of p-adic Hodge theory. Let E be an elliptic curve over Qp with good
reduction. This means that we have a unique elliptic scheme E over Zp with EQp ' E. For
each prime ` (which may be equal to p), the Tate module

T`(E) := lim −E[`n](Qp) ' Z2
`

is equipped with a continuous GQp-action, which means that the rational Tate module

V`(E) := T`(E)⊗Z` Q` ' Q2
`

is an `-adic Galois representation. The Tate module T`(E) and the rational Tate module
V`(E) contain important information about E, as suggested by the following fact:

Fact. For two elliptic curves E1 and E2 over Qp, the maps

Hom(E1, E2)⊗ Z` −! HomΓQp (T`(E1), T`(E2))

Hom(E1, E2)⊗Q` −! HomΓQp (V`(E1), V`(E2))
(1.1)

are injective; in other words, a map between E1 and E2 is determined by the induced map on
the (rational) Tate modules as Galois representations.

Remark. The above fact remains true if Qp is replaced by an arbitrary field L of characteristic
is not equal to `. Moreover, the maps in (1.1) become isomorphism if L is a finite field, a
global function field or a number field, as shown respectively by Tate, Zarhin and Faltings.

5



6 I. INTRODUCTION

For ` 6= p, we can explicitly describe the Galois action on T`(E) (and V`(E)) by passing
to the mod p reduction EFp of E . Note that EFp is an elliptic curve over a finite field Fp, so
the Galois action of ΓFp on the Tate module T`(EFp) and the rational Tate module V`(EFp)
are very well understood. In fact, the Frobenius element of ΓFp , which topologically generates

the Galois group ΓFp , acts on T`(EFp) with characteristic polynomial x2 − ax + p where
a = p+ 1−#EFp(Fp). Now the punchline is that we have isomorphisms

T`(E) ' T`(EFp) and V`(E) ' V`(EFp) (1.2)

as ΓQp-representations, where the actions on T`(EFp) and V`(EFp) are given by ΓQp � ΓFp . In
other words, we can describe the Galois action on T`(E) (and V`(E)) as follows:

(1) The action of ΓQp factors through the map ΓQp � ΓFp .

(2) The Frobenius element of GFp acts with characteristic polynomial x2− ax+ p where
a = p+ 1−#EFp(Fp).

A Galois representation of ΓQp which satisfies the statement (1) is said to be unramified.
The terminology comes from the fact that ΓFp is isomorphic to Gal(Qun

p /Qp), where Qun
p de-

notes the maximal unramified extension of Qp. It is worthwhile to mention that our discussion
in the preceding paragraph shows one direction of the following important criterion:

Theorem 1.1.1 (Néron [Nér64], Ogg [Ogg67], Shafarevich). An elliptic curve E on Qp has
a good reduction if and only if the Tate module T`(E) is unramified for all primes ` 6= p.

Let us now turn to the case ` = p, which is our primary interest. In this case, we never have
an isomorphism between the (rational) Tate modules as in (1.2); indeed, Tp(EFp) is isomorphic

to either Zp or 0 whereas Tp(E) is always isomorphic to Z2
p. This suggests that the action of

ΓQp on Tp(E) has a nontrivial contribution from the kernel of the map ΓQp � ΓFp , called the
inertia group of Qp, which we denote by IQp .

Therefore we need another invariant of E which does not lose too much information about
the Galois action under passage to the mod p reduction EFp . A solution by Grothendieck and
Tate is to replace the Tate module Tp(E) by the direct limit of p-power torsion groups

E[p∞] := lim−!E[pn]

called the p-divisible group of E. Here we consider each E[pn] as a finite flat group scheme
over Qp. It is not hard to see that E[p∞] contains all information about the Galois action on
Tp(E) in the following sense:

Fact. We can recover the Galois action of ΓQp on Tp(E) from E[p∞].

We can similarly define the p-divisible groups E [p∞] and EFp [p∞] associated to E and EFp .
The p-divisible groups of E, E and EFp are related as follows:

E [p∞]

E[p∞] EFp [p∞]

⊗Qp ⊗Fp

We wish to study E[p∞] using EFp [p∞], as we expect that the theory of p-divisible groups
becomes simpler over Fp than it is over Qp. The first step towards this end is provided by the
following fundamental result:
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Theorem 1.1.2 (Tate [Tat67]). The generic fiber functor{
p-divisible groups

over Zp

} {
p-divisible groups

over Qp

}
⊗Qp

is fully faithful.

Remark. Theorem 1.1.2 is the main result of Tate’s seminal paper [Tat67], which marks
the true beginning of p-adic Hodge theory. Here we already see how this result provides the
first significant progress in the arithmetic side of the theory. In the next subsection we will
see how its proof initiates the geometric side of the theory.

Let us now consider the problem of studying E [p∞] using the mod p reduction EFp [p∞].
Here the key is to realize E [p∞] as a characteristic 0 lift of EFp [p∞]. More precisely, we
identify the category of p-divisible groups over Zp with the category of p-divisible groups over
Fp equipped with “lifting data”. Such an identification is obtained by switching to another
category, as stated in the following fundamental result:

Theorem 1.1.3 (Dieudonné [Die55], Fontaine [Fon77]). There are (anti-)equivalences of
categories {

p-divisible groups
over Fp

}
∼
 !

{
Dieudonné modules

over Fp

}
{

p-divisible groups
over Zp

}
∼
 !

{
Dieudonné modules over Fp

with an “admissible” filtration

}
where a Dieudonné module over Fp means a finite free Zp-module M equipped with a (Frobenius-
semilinear) endomorphism ϕ such that pM ⊂ ϕ(M).

Remark. The description of Dieudonné modules in our situation is misleadingly simple. In
general, the endomorphism ϕ should be Frobenius-semilinear in an appropriate sense. Here
we don’t get this semilinearity since the Frobenius automorphism of Fp acts trivially on Zp.

We have thus transformed the study of the p-adic Galois action on the Tate modules to
the study of certain explicit semilinear algebraic objects. Roughly speaking, the actions of the
inertia group IQp and the Frobenius element in ΓFp on Tp(E) are respectively encoded by the
“admissible” filtration and the (semilinear) endomorphism ϕ on the corresponding Dieudonné
module.

If we instead want to study the p-adic Galois representation of the rational Tate module,
all we have to do is to invert p in the corresponding Dieudonné module. The resulting
algebraic object is a finite dimensional vector space over Qp with a (Frobenius-semilinear)
automorphism ϕ. Such an object is called an isocrystal.

Our discussion here shows an example of the defining theme of p-adic Hodge theory.
In fact, much of p-adic Hodge theory is about constructing a dictionary that relates good
categories of p-adic Galois representations to various categories of semilinear algebraic objects.
The dictionary that we described here serves as a prototype for many other dictionaries.

Another recurring theme of p-adic Hodge theory is base change of the ground field K to

the completion K̂un of its maximal unramified extension. In terms of the residue field, this
amounts to passing to the algebraic closure. In most cases, such a base change preserves
key information about the Galois action of ΓK . In fact, most good properties of p-adic
representations of ΓK turn out to be detected on the inertia group, which is preserved under

passing to K̂un as follows:
IK ' ΓKun ' Γ

K̂un .
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Moreover, base change to K̂un often greatly simplifies the study of the Galois action of ΓK .

For example, in our discussion base change to Q̂un
p amounts to replacing the residue field by

Fp, thereby allowing us to make use of the following fundamental result:

Theorem 1.1.4 (Manin [Man63]). The category of isocrystals over Q̂un
p is semisimple.

In summary, we have motivated and described several key ideas in p-adic Hodge theory
via Galois representations that arise from an elliptic curve over Qp with good reduction. In
particular, our discussion shows a couple of recurring themes in p-adic Hodge theory, as stated
below.

(1) Construction of a dictionary between good categories of p-adic representations and
various categories of semilinear algebraic objects.

(2) Base change of the ground field K to K̂un.

It is natural to ask whether there is a general framework for these themes. To answer this
question, we need to investigate the geometric side of the story.

1.2. The geometric perspective

From the geometric perspective, p-adic Hodge theory is the study of the geometry of
a (proper smooth) variety X over a p-adic field K. Our particular interests are various
cohomology theories related to X, such as

• the étale cohomology Hn
ét,

• the algebraic de Rham cohomology Hn
dR,

• the crystalline cohomology Hn
cris.

Note that p-adic Galois representations naturally come into play via the étale cohomology
groups Hn

ét(XK ,Qp). Hence we already see a vague connection to the arithmetic side of
p-adic Hodge theory.

In this subsection, we motivate and state three fundamental comparison theorems about
these cohomology theories. These theorems share a general theme of extracting some infor-
mation about the geometry of X from the ΓK-representation on Hn

ét(XK ,Qp).

Recall that, for a proper smooth C-scheme Y , we have the Hodge decomposition

Hn(Y (C),Q)⊗Q C ∼=
⊕
i+j=n

H i(Y,Ωj
Y ).

During the proof of Theorem 1.1.2, Tate observed the existence of an analogous decomposition
for the étale cohomology of an abelian variety over K with good reduction. This discovery
led to his conjecture that such a decomposition should exist for all étale cohomology groups
of an arbitrary proper smooth varieties over K. This conjecture is now a theorem, commonly
referred to as the Hodge-Tate decomposition.

Theorem 1.2.1 (Faltings [Fal88]). Let CK denote the p-adic completion of K. For a proper
smooth variety X over K, there is a canonical isomorphism

Hn
ét(XK ,Qp)⊗Qp CK ∼=

⊕
i+j=n

H i(X,Ωj
X/K)⊗K CK(−j) (1.3)

compatible with ΓK-actions.

Remark. Since the action of ΓK on K is continuous, it uniquely extends to an action on CK .
Thus ΓK acts diagonally on the left side of (1.3) and only through the Tate twists CK(−j)
on the right side of (1.3).
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For an analogy to other two comparison theorems, let us rewrite (1.3) as

Hn
ét(XK ,Qp)⊗Qp BHT

∼=
( ⊕
i+j=n

H i(X,Ωj
X/K)

)
⊗K BHT

where BHT := ⊕
j∈Z

CK(j) is the Hodge-Tate period ring. By a theorem of Tate and Sen, we

have BΓK
HT = K. Hence we obtain an isomorphism of finite dimensional graded K-vector

spaces (
Hn

ét(XK ,Qp)⊗Qp BHT

)ΓK ∼= ⊕
i+j=n

H i(X,Ωj
X/K),

which allows us to recover the Hodge numbers from the ΓK-representation on Hn
ét(XK ,Qp).

Next we discuss the comparison theorem between étale cohomology and de Rham coho-
mology. Recall that, for a proper smooth C-scheme Y of dimension d, we have a comparison
isomorphism

Hn(Y (C),Q)⊗Q C ∼= Hn
dR(Y/C) (1.4)

given by Poincare duality and the “period paring”

Hn
dR(Y (C)/C)×H2d−n(Y (C),C) −! C, (ω,Γ) 7!

∫
Γ
ω.

One may hope to obtain a p-adic analogue of (1.4) by tensoring both Hn
ét(XK ,Qp) and

Hn
dR(X/K) with an appropriate “period ring”. Fontaine [Fon82] formulated this idea into a

conjecture using his construction of a ring BdR that satisfies the following properties:

(1) BdR is equipped with a filtration such that the associated graded ring is BHT.

(2) BdR is endowed with an action of ΓK such that BΓK
dR = K.

Below is a precise statement of this conjecture, which is now a theorem commonly referred to
as the p-adic de Rham comparison isomorphism.

Theorem 1.2.2 (Faltings [Fal88]). For a proper smooth variety X over K, there is a canon-
ical isomorphism

Hn
ét(XK ,Qp)⊗Qp BdR

∼= Hn
dR(X/K)⊗K BdR (1.5)

compatible with ΓK-actions and filtrations.

Remark. By construction, the de Rham cohomology group Hn
dR(X/K) is endowed with the

Hodge filtration whose associated gradedK-space is the Hodge cohomology
⊕
i+j=n

H i(X,Ωj
X/K).

The filtration on the right side of (1.5) is given by the convolution filtration.

An important consequence of Theorem 1.2.2 is that one can recover the de Rham coho-
mology Hn

dR(X/K) from the ΓK-representation on Hn
ét(XK ,Qp) by(

Hn
ét(XK ,Qp)⊗Qp BdR

)ΓK ∼= Hn
dR(X/K).

Moreover, one can recover Theorem 1.2.1 from Theorem 1.2.2 by passing to the associated
graded K-vector spaces.

However, Theorem 1.2.2 (or Theorem 1.2.1) does not provide any way to recover the ΓK-
representation on Hn

ét(XK ,Qp). It is therefore natural to seek for a refinement of Hn
dR(X/K)

which recovers the ΓK-representation on Hn
ét(XK ,Qp). Grothendieck conjectured that, when

X has good reduction, such a refinement should be given by the crystalline cohomology in
the following sense:
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Conjecture 1.2.3 (Grothendieck [Gro74]). Let k be the residue field of OK . Denote by
W (k) the ring of Witt vectors over k, and by K0 its fraction field. There should exist a (purely
algebraic) fully faithful functor D on a category of certain p-adic Galois representations such
that

D
(
Hn

ét(XK ,Qp)
)

= Hn
cris(Xk/W (k))⊗W (k) K0

for all proper smooth variety X with a proper smooth integral model X over OK .

Remark. The functor D in Conjecture 1.2.3 has become to known as the Grothendieck
mysterious functor.

It is worthwhile to mention that Conjecture 1.2.3 is motivated by the dictionary that we
described in 1.1. Recall that, for an elliptic curve E over Qp with good reduction, we discussed
how the ΓQp-representation on Vp(E) is determined by the associated filtered isocrystal. We
may regard this dictionary as a special case of the Grothendieck mysterious functor, as Vp(E)
and the associated filtered isocrystal are respectively identified with the dual of H1

ét(EQp ,Qp)

and H1
cris(EFp/Zp) ⊗Zp Qp. The key insight of Grothendieck was that there should be a way

to go directly from H1
ét(EQp ,Qp) to H1

cris(EFp/Zp)⊗Zp Qp without using p-divisible groups.

Fontaine [Fon94] reformulated Conjecture 1.2.3 in terms of a comparison isomorphism
between étale cohomology and crystalline cohomology. His idea is to construct another period
ring Bcris that satisfies the following properties:

(1) Bcris is equipped with an action of ΓK such that BΓK
cris = K0.

(2) There is a Frobenius-semilinear endomorphism ϕ on Bcris.

(3) There is a natural map

Bcris ⊗K0 K ↪−! BdR

which induces a filtration on Bcris from the filtration on BdR.

The endomorphism ϕ in (2) is referred to as the Frobenius action on Bcris. Fontaine’s conjec-
ture is now a theorem, which we state as follows:

Theorem 1.2.4 (Faltings [Fal88]). Suppose that X has good reduction, meaning that it has
a proper smooth model X over OK . There exists a canonical isomorphism

Hn
ét(XK ,Qp)⊗Qp Bcris

∼= Hn
cris(Xk/W (k))[1/p]⊗K0 Bcris

compatible with ΓK-actions, filtrations, and Frobenius actions.

Remark. By construction, the crystalline cohomology Hn
cris(Xk/W (k)) carries a natural

Frobenius action. Moreover, the Hodge filtration on Hn
dR(X/K) induces a filtration on

Hn
cris(Xk/W (k))[1/p] via the comparison isomorphism

Hn
cris(Xk/W (k))[1/p]⊗K0 K

∼= Hn
dR(X/K).

By Theorem 1.2.4, we have an isomorphism(
Hn

ét(XK ,Qp)⊗Qp Bcris

)ΓK ∼= Hn
cris(Xk/W (k))[1/p].

With some additional work, we can further show that the ΓK-action on Hn
ét(XK ,Qp) can be

recovered from Hn
cris(Xk/W (k))[1/p] by taking the filtration and the Frobenius action into

account. In fact, the mysterious functor in Conjecture 1.2.3 turns out to be

D(V ) := (V ⊗Qp Bcris)
ΓK .

However, we still need to specify the source and the target categories such that D is fully
faithful. The answer turns out to come from the interplay between the arithmetic and the
geometric perspectives, as we will see in the next subsection.
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1.3. The interplay via representation theory

The Grothendieck mysterious functor, which we have yet to give a complete description,
is an example of various functors that link the arithmetic side and the geometric side of p-adic
Hodge theory. Such functors provide vital means for studying p-adic Hodge theory via the
interplay between the arithmetic and geometric perspectives.

Here we describe a general formalism due to Fontaine for constructing functors that con-
nect the arithmetic and geometric sides of p-adic Hodge theory. Let RepQp(ΓK) denote the
category of p-adic representations of ΓK for a p-adic field K. For a p-adic period ring B, such
as BHT, BdR or Bcris as introduced in the preceding subsection, we define

DB(V ) := (V ⊗Qp B)ΓK for each V ∈ RepQp(ΓK).

We say that V ∈ RepQp(ΓK) is B-admissible if the natural morphism

αV : DB(V )⊗BΓK B −! V ⊗Qp B

is an isomorphism. Let RepBQp(ΓK) ⊆ RepQp(ΓK) be the full subcategory of B-admissible

representations. Then DB defines a functor from RepBQp(ΓK) to the category of finite dimen-

sional vector spaces over BΓK with some additional structures. Here the additional structures
that we consider for the target category reflect the structure of the ring B, as indicated by
the following examples:

(a) The target category of DBHT
is the category of finite dimensional graded K-spaces,

reflecting the graded algebra structure on BHT.

(b) The target category of DBdR
is the category of finite dimensional filtered K-spaces,

reflecting the filtration on BdR.

(c) The target category of DBcris is the category of finite dimensional filtered K0-spaces
with a Frobenius-semilinear endomorphism, reflecting the filtration and the Frobe-
nius action on Bcris.

In particular, we have a complete description of the Grothendieck mysterious functor given
by DBcris . We also obtain its fully faithfulness from the following fundamental result:

Theorem 1.3.1 (Fontaine [Fon94]). The functors DBHT
, DBdR

, and DBcris are all exact and
faithful. Moreover, the functor DBcris is fully faithful.

Remark. We will see in Chapter III that the first statement of Theorem 1.3.1 is (almost) a
formal consequence of some algebraic properties shared by BHT, BdR and Bcris.

Note that, for each B = BHT, BdR, or Bcris, the definition of B-admissibility is motivated
by the corresponding comparison theorem from the preceding subsection, while the target
category of the functor DB consists of semilinear algebraic objects that arise in the arith-
metic side of p-adic Hodge theory. In other words, the functor DB relates a certain class of
“geometric” p-adic representations to a class of semilinear algebraic objects that carry some
arithmetic information. Hence we can consider Fontaine’s formalism as a general framework
for connecting the following themes:

(1) Study of the geometry of a proper smooth variety over a p-adic field via the Galois
action on the étale cohomology groups.

(2) Construction of a dictionary that relates certain p-adic representations to various
semilinear algebraic objects.

In fact, this tidy connection provided by Fontaine’s formalism forms the backbone of classical
p-adic Hodge theory.
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2. A first glimpse of the Fargues-Fontaine curve

In this section, we provide a brief introduction to a remarkable geometric object called
the Fargues-Fontaine curve, which serves as the fundamental curve of p-adic Hodge theory.
Our goal for this section is twofold: building some intuition about what this object is, and
explaining why this object plays a pivotal role in modern p-adic Hodge theory.

2.1. Definition and some key features

The Fargues-Fontaine curve has two different incarnations, namely the schematic curve
and the adic curve. In this subsection, we will only consider the schematic curve, as we don’t
have a language to describe the adic curve. The two incarnations are essentially equivalent
due to a GAGA type theorem, as we will see in Chapter IV.

Throughout this section, let us restrict our attention to the case K = Qp for simplicity.
We denote by F the completion of the algebraic closure of Fp((u)). Recall that Fontaine
constructed a p-adic period ring Bcris which is equipped with a ΓQp-action and a Frobenius

semilinear endomorphism ϕ. There is also a subring B+
cris of Bcris with the following properties:

(i) B+
cris is stable under ϕ with (B+

cris)
ϕ=1 ' Qp.

(ii) there is an element t ∈ B+
cris with Bcris = B+

cris[1/t] and ϕ(t) = pt.

Definition 2.1.1. The schematic Fargues-Fontaine curve (associated to the pair (Qp, F )) is
defined by

X := Proj
(⊕
n≥0

(B+
cris)

ϕ=pn
)
.

Note that X can be regarded as a Qp-scheme by the property (i) of B+
cris. However, as we

will see in a moment, the scheme X is not of finite type over Qp. In particular, X is not a
curve in the usual sense, and not even a projective scheme over Qp.

Nonetheless, the scheme X is not completely exotic. In fact, X is geometrically akin to
the complex projective line P1

C in many aspects.

Theorem 2.1.2 (Fargues-Fontaine [FF18]). We have the following facts about the Fargues-
Fontaine curve X:

(1) As a Qp-scheme, X is noetherian, connected and regular of dimension 1.

(2) X is a union of two spectra of Dedekind domains.

(3) X is complete in the sense that the divisor of every rational function on X has degree
zero.

(4) Pic(X) ' Z.

Remark. The statements (1) and (3) together suggest that X behaves almost as a proper
curve, thereby justifying the use of the word “curve” to describe X.

We can also describe X as an affine scheme of a principal domain plus “a point at infinity”,
in the same way as we describe P1

C as Spec (C[z]) plus a point at infinity. More precisely, for
some “preferred” closed point ∞ ∈ X we have identifications

X − {∞} = Spec (Be) and ÔX,∞ = B+
dR

where Be := Bϕ=1
cris and B+

dR is the ring of integers of BdR. The fact that Be is a principal
ideal domain is due to Fontaine.

Remark. The above discussion provides a geometric description of the period ring BdR.
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2.2. Relation to the theory of perfectoid spaces

The Fargues-Fontaine curve turns out to have a surprising connection to Scholze’s theory
of perfectoid spaces. In this subsection, we describe this connection after recalling some basic
definitions and fundamental facts about perfectoid fields.

Definition 2.2.1. Let C be a nonarchimedean field of residue characteristic p.

(1) C is called a perfectoid field if it satisfies the following conditions:

(i) its valuation is nondiscrete,

(ii) the p-th power Frobenius map on OC/p is surjective.

(2) If C is a perfectoid field with valuation | · |, we define the tilt of C by

C[ := lim −
x 7!xp

C

which carries a ring structure with a valuation | · |[ as follows:

(a) (a · b)n := anbn,

(b) (a+ b)n := lim
m!∞

(am+n + bm+n)p
m

,

(c) |a|[ := |a0|.
Remark. It is not hard to see that C[ is a perfectoid field of characteristic p.

Example 2.2.2. The p-adic completion Cp of Qp is a perfectoid field with C[p ' F .

The theory of perfectoid fields (and perfectoid spaces) has numerous applications in p-
adic Hodge theory. As a key example, we mention Scholze’s generalization of Theorem 1.2.2
(and Theorem 1.2.1) to the category of rigid analytic varieties. Here we state one of the
fundamental results for such applications, known as the tilting equivalence.

Theorem 2.2.3 (Scholze [Sch12]). Let C be a perfectoid space.

(1) Every finite extension of C is a perfectoid field.

(2) The tilting operation induces an equivalence of categories

{ finite extensions of C } ∼
 !

{
finite extensions of C[

}
.

(3) There is an isomorphism ΓC ' ΓC[ of absolute Galois groups.

An amazing fact is that, gievn a characteristic p perfectoid field F , the Fargues-Fontaine
curve X parametrizes the characteristic 0 untilts of F , which are pairs (C, ι) consisting of

a characteristic 0 perfectoid field C and an isomorphism ι : C[ ' F . Note that there is
an obvious notion of isomorphism for untilts of F . In addition, the p-th power Frobenius
automorphism ϕF of F acts on untilts of F by ϕF · (C, ι) := (C,ϕF ◦ ι).
Theorem 2.2.4 (Fargues-Fontaine [FF18]). For every closed point x ∈ X, the residue field

k(x) is a perfectoid field of characteristic 0 with k(x)[ ' F . Moreover, there is a bijection

{ closed points of X } ∼
 ! { ϕF -orbits of characteristic 0 untilts of F }

given by x 7!
(
k(x), k(x)[ ' F

)
.

Remark. Theorem 2.2.4 implies that X is not of finite type over Qp.

This moduli interpretation of the Fargues-Fontaine curve is one of the main inspirations
for Scholze’s theory of diamonds, which is a perfectoid analogue of Artin’s theory of algebraic
spaces. In fact, many perfectoid spaces or diamonds that arise in p-adic geometry have moduli
interpretations involving (vector bundles on) the Fargues-Fontaine curve.
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2.3. Geometrization of p-adic Galois representations

Let us now demonstrate how the Fargues-Fontaine curve provides a way to geometrically
study p-adic Galois representations. The geometric objects that we will consider are as follows:

Definition 2.3.1. Let us fix a closed point ∞ ∈ X.

(1) A vector bundle on X is a locally free OX -module of finite rank.

(2) A modification of vector bundles at ∞ is a tuple (E ,F , i) where

• E and F are vector bundles on X,

• i : E|X−{∞ }
∼
−! F|X−{∞ } is an isomorphism outside ∞.

We will see in Chapter IV that vector bundles on the Fargues-Fontaine curve admit a
complete classification. The following theorem summarizes some of its key consequences.

Theorem 2.3.2 (Fargues-Fontaine [FF18]). There is a functorial commutative diagram{
isocrystals over Fp

}
{ vector bundles on X }

{
filtered isocrystals

over Fp

} {
modifications of

vector bundles on X

}
∼

where the vertical maps are forgetful maps defined by (N,Fil•(N)) 7! N and (E ,F , i) 7! E.

Now recall that Fontaine constructed a fully faithful functor

DBcris :

{
Bcris-admissible p-adic
representations of ΓQp

}
−! { filtered isocrystals over Fp } .

If we compose DBcris with the base change functor to Fp and the bottom map in Theorem
2.3.2, we obtain a functor{

Bcris-admissible p-adic
representations of ΓQp

}
−!

{
modifications of

vector bundles on X

}
.

Hence we can study Bcris-admissible p-adic Galois representations by purely geometric objects,
namely modifications of vector bundles on X. As an application, we obtain the following
fundamental result:

Theorem 2.3.3 (Colmez-Fontaine [CF00]). Let N• :=
(
N,Fil•(N)

)
be a filtered isocrystal

over Fp. We denote by N
•

:=
(
(N),Fil•(N)

)
the associated filtered isocrystal over Fp (ob-

tained by base change), and by
(
E(N

•
),F(N

•
), i(N

•
)
)

its image under the bottom map in
Theorem 2.3.2. Then N• is in the essential image of DBcris if and only if the vector bundle

F(N
•
) is trivial (i.e., isomorphic to O⊕nX for some n).

Remark. Since DBcris is fully faithful, its essential image gives a purely algebraic category
which is equivalent to the category of Bcris-admissible representations.

Theorem 2.3.3 is commonly stated as “weakly admissible filtered isocrystals are admis-
sible”. It was initially proved by Colmez-Fontaine [CF00] through a very complicated and
technical argument. In Chapter IV, we will provide a very short and conceptual proof of
Theorem 2.3.3. The key point of our proof is that the left inverse VBcris of DBcris can be
cohomologically realized by the following identity:

VBcris(N
•) ' H0

(
X,F(N

•
)
)
.
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Theorem 2.3.3 has a couple of interesting implications as follows:

(1) Bcris-admissibility is a “geometric” property.

(2) Bcris-admissibility is insensitive to replacing the residue field Fp by Fp, which amounts

to replacing the ground field Qp by Q̂un
p .

These two implications are closely related since base change of the ground field Qp to Q̂un
p

can be regarded as “passing to the geometry” via the bottom map in Theorem 2.3.2.

Remark. The Fargues-Fontaine curve also provides a way to geometrically study `-adic Ga-
lois representations. In fact, Fargues [Far16] initiated a remarkable problem called the ge-
ometrization of the local Langlands correspondence, which aims to realize the local Langlands
correspondence as the geometric Langlands correspondence on the Fargues-Fontaine curve.





CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section we develop some basic theory of finite flat group schemes, in preparation
for our discussion of p-divisible groups in §2. Our primary reference is Tate’s article [Tat97].

Throughout this section, all rings are assumed to be commutative.

1.1. Basic definitions and properties

We begin by recalling the notion of group scheme.

Definition 1.1.1. Let S be a scheme. A group scheme over S is an S-scheme G along with
morphisms

• m : G×S G −! G, called the multiplication,

• e : S −! G, called the unit section,

• i : G −! G, called the inverse,

that fit into the following commutative diagrams:

(a) associativity axiom:

G×S G×S G G×S G

G×S G G

(m,id)

(id,m) m

m

(b) identity axiom:

G×S S G G

G×S G

∼

(id,e)

id

m

S ×S G G G

G×S G

∼

(e,id)

id

m

(c) inverse axiom:

G G×S G

S G

(i,id)

(id,i)

m

e

In other words, a group scheme over S is a group object in the category of S-schemes.

Lemma 1.1.2. Given a scheme S, an S-scheme G is a group scheme if and only if the set
G(T ) for any S-scheme T carries a functorial group structure.

Proof. This is immediate by Yoneda’s lemma. �

17
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Definition 1.1.3. Let G and H be group schemes over a scheme S.

(1) A morphism G! H of S-schemes is called a homomorphism if for any S-scheme T
the induced map G(T )! H(T ) is a group homomorphism.

(2) The kernel of a homomorphism f : G! H, denoted by ker(f), is a group scheme such
that ker(f)(T ) for any S-scheme T is the kernel of the induced map G(T )! H(T ).
Equivalently, by Lemma 1.1.2 ker(f) is the fiber of f over the unit section of H.

Example 1.1.4. Let G be a group scheme over a scheme S, and let n be a positive integer.
The multiplication by n on G, denoted by [n]G, is a homomorphism G! G defined by g 7! gn.

In this section, we are mostly interested in affine group schemes over an affine base. Let
us generally denote the base ring by R.

Definition 1.1.5. Let G = Spec (A) be an affine group scheme over R. We define

• the comultiplication µ : A! A⊗R A,

• the counit ε : A! R

• the coinverse ι : A! A,

to be the maps respectively induced by the multiplication, unit section, and inverse of G.

Example 1.1.6. We present some important examples of affine group schemes.

(1) The additive group over R is a scheme Ga := Spec (R[t]) with the natural additive
group structure on Ga(B) = B for each R-algebra B. The comultiplication, counit,
and coinverse are given by

µ(t) = t⊗ 1 + 1⊗ t, ε(t) = 0, ι(t) = −t.
(2) The multiplicative group over R is a scheme Gm := Spec (R[t, t−1]) with the nat-

ural multiplicative group structure on Gm(B) = B× for each R-algebra B. The
comultiplication, counit, and coinverse are given by

µ(t) = t⊗ t, ε(t) = 1, ι(t) = t−1.

(3) The n-th roots of unity is a scheme µn := Spec (R[t]/(tn − 1)) with the natural
multiplicative group structure on µn(B) = { b ∈ B : bn = 1 } for each R-algebra B.
In fact, we can regard µn as a closed subgroup scheme of Gm by the map R[t, t−1]�
R[t]/(tn − 1) with the comultiplication, counit, and coinverse as in (2).

(4) If R has characteristic p, then we have a group scheme αp := Spec (R[t]/tp) with the
natural additive group structure on αp(B) = { b ∈ B : bp = 0 } for each R-algebra
B. In fact, we can regard αp as a closed subgroup scheme of Ga by the map R[t]�
R[t]/(tp) with the comultiplication, counit, and coinverse as in (1).

(5) If A is an abelian scheme over R, its n-torsion subgroup A[n] := ker([n]A) is an affine
group scheme over R since [n]A is a finite morphism.

(6) If M is an abstract group, the constant group scheme on M over R is a scheme

M :=
∐
m∈M

Spec (R) ' Spec (A), where A '
∏
m∈M

R is the ring of R-valued functions

on M , with the natural group structure (induced by M) on

M(B) = { locally constant functions Spec (B)!M }
for each R-algebra B. Note that A ⊗R A is identified with the ring of R-values
functions on M ×M . The comultiplication, counit, and coinverse are given by

µ(f)(m,m′) = f(mm′), ε(f) = f(1M ), ι(f)(m) = f(m−1).
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Let us now introduce the objects of main interest for this section. For the rest of this
section, we assume that R is noetherian unless stated otherwise.

Definition 1.1.7. Let G = Spec (A) be an affine group scheme over R. We say that G is a
(commutative) finite flat group scheme of order n if it satisfies the following conditions:

(i) G is locally free of rank n over R; that is, A is a locally free R-algebra of rank n.

(ii) G is commutative in the sense of the following commutative diagram

G×R G G×R G

G

(x,y)7!(y,x)

m m

where m denotes the multiplication of G.

Remark. As a reality check, we have the following facts:

(1) G satisfies (i) if and only if the structure morphism G! Spec (R) is finite flat.

(2) G satisfies (ii) if and only if G(B) is commutative for each R-algebra B.

However, even if G is finite flat, G(B) can be infinite for some R-algebra B such as an infinite
product of R.

Example 1.1.8. Some of the group schemes that we introduced in Example 1.1.6 are finite
flat group schemes, as easily seen by their affine descriptions.

(1) The n-th roots of unity µn is a finite flat group scheme of order n.

(2) The group scheme αp is a finite flat group scheme of order p.

(3) If A is an abelian scheme of dimension g over R, its n-torsion subgroup A[n] is a
finite flat group scheme of order n2g.

(4) If M is an abelian group of order n, the constant group scheme M is a finite flat
group scheme of order n.

Many basic properties of finite abelian groups extend to finite flat group schemes. Here
we state two fundamental theorems without proof.

Theorem 1.1.9 (Grothendieck [Gro60]). Let G be a finite flat R-group scheme, and let H
be a closed finite flat subgroup scheme of G. Denote by m and n the orders of G and H over
R, respectively. Then the quotient G/H exists as a finite flat group scheme of order m/n over
R, thereby giving rise to a short exact sequence of group schemes

0 −! H −! G −! G/H −! 0.

Theorem 1.1.10 (Deligne). Let G be a finite flat group scheme of order n over R. Then
[n]G annihilates G; in other words, it factors through the unit section of G.

Remark. It is unknown whether Theorem 1.1.10 holds ifG is not assumed to be commutative.

We also note that finite flat group schemes behave well under base change.

Lemma 1.1.11. Let G = Spec (A) be a finite flat group scheme over R. For any R-algebra
B, GB is a finite flat group scheme over B.

Proof. Let µ, ε, and ι be the comultiplication, counit, and coinverse of G, respectively. It
is straightforward to check that GB = Spec (A⊗RB) is a group scheme with comultiplication,
counit and coinverse given by µ⊗ 1, ε⊗ 1, and ι⊗ 1. The finite flatness of GB is immediate
from the finite flatness of G. �
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1.2. Cartier duality

In this subsection, we discuss an important notion of duality for finite flat group schemes.

Definition 1.2.1. Let G = Spec (A) be a finite flat group scheme over R. We define the
Cartier dual of G to be an R-group scheme G∨ with

G∨(B) = HomB-grp(GB, (Gm)B) for each R-algebra B,

where the group structure is induced by the multiplication map on (Gm)B.

Remark. We may identify G∨ = Hom(G,Gm) as a sheaf on the big fppf site.

Lemma 1.2.2. Let G be a finite flat R-group scheme such that [n]G = 0. Then we have

G∨(B) = HomB-grp(GB, (µn)B).

Proof. The assertion follows immediately by observing µn = ker([n]Gm). �

Theorem 1.2.3 (Cartier duality). Let G = Spec (A) be a finite flat group scheme of order n
over R. We let µ, ε, and ι respectively denote the comultiplication, counit, and coinverse of
A. In addition, we let s : R ! A be the structure morphism, and mA : A ⊗R A ! A be the
ring multiplication map. Define A∨ := HomR-mod(A,R) to be the dual R-module of A.

(1) The dual maps µ∨ and ε∨ define an R-algebra structure on A∨.

(2) We have an identification G∨ ∼= Spec (A∨) with m∨A, s
∨, and ι∨ as the comultiplica-

tion, counit, and coinverse.

(3) G∨ is a finite flat group scheme of order n over R.

(4) There is a canonical isomorphism (G∨)∨ ∼= G.

Proof. The proof of (1) is straightforward and thus omitted here.

Let us now prove (2). It is not hard to verify that GO := Spec (A∨) carries a structure of
groups scheme with m∨A, s

∨, and ι∨ as the comultiplication, counit, and coinverse. Let B be
an arbitrary R-algebra. We wish to establish a canonical isomorphism

G∨(B) ∼= GO(B). (1.1)

Let us write µB := µ⊗ 1, εB := ε⊗ 1, and ιB : ι⊗ 1 for the comultiplication, counit, and
coinverse of AB := A ⊗R B. We also write sB : s ⊗ 1 for the structure morphism B ! AB.
By the group scheme axioms, we have

(εB ⊗ id) ◦ µB = id and (ιB, id) ◦ µB = sB ◦ εB. (1.2)

Now we use Definition 1.2.1 and the affine description of Gm given in Example 1.1.6 to obtain

G∨(B) = HomB-grp(GB, (Gm)B)

∼=
{
f ∈ HomB-alg(B[t, t−1], AB) : µB(f(t)) = f(t)⊗ f(t), εB(f(t)) = 1, ιB(f(t)) = f(t)−1

}
where the conditions on the last set come from compatibility with the comultiplications,
counits, and coinverses on GB and (Gm)B. Furthermore, an element of HomB(B[t, t−1], AB)
is determined by its value at t, which must be a unit in AB since t is a unit. We thus obtain

G∨(B) ∼=
{
u ∈ A×B : µB(u) = u⊗ u, εB(u) = 1, ιB(u) = u−1

}
.

Moreover, by (1.2) every element u ∈ A×B with µB(u) = u ⊗ u must satisfy εB(u) = 1 and
ιB(u) = u−1. Therefore we find an identification

G∨(B) ∼=
{
u ∈ A×B : µB(u) = u⊗ u

}
. (1.3)
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Meanwhile, by (1) we have a B-algebra structure on A∨B := A∨ ⊗R B defined by µ∨B :=
µ∨ ⊗ 1 and ε∨B := ε∨ ⊗ 1. We also have an identification

GO(B) ∼= HomR-alg(A∨, B) ∼= HomB-alg(A∨ ⊗R B,B). (1.4)

Let mB : B⊗BB ! B be the ring multiplication map on B. Note that HomB-alg(A∨⊗RB,B)
is the set B-module homomorphisms A∨⊗RB ! B through which µ∨B and ε∨B are compatible
with mB and idB, respectively. Taking B-duals, we identify this set with the set of B-module
homomorphisms B ! A ⊗R B = AB through which m∨B and id∨B are compatible with µB
and εB. Moreover, the dual maps m∨B and id∨B send 1 to 1 ⊗ 1 and 1, respectively. Since
every B-module homomorphism B ! AB is determined by its value at 1, we have obtained
an identification

HomB-alg(A∨ ⊗R B,B) ∼= { u ∈ AB : µB(u) = u⊗ u, εB(u) = 1 } .
Then by (1.2) we find

HomB-alg(A∨ ⊗R B,B) ∼=
{
u ∈ A×B : µB(u) = u⊗ u

}
,

which yields an identification

GO(B) ∼= { u ∈ AB : µB(u) = u⊗ u } (1.5)

by (1.4). We thus obtain the desired isomorphism (1.1) by (1.3) and (1.5), thereby completing
the proof of (2).

Now (3) follows from (2) since A∨ is a free R-module of rank n by construction. We also
deduce (4) from (2) using the canonical isomorphism (A∨)∨ ∼= A. �

We now exhibit some important examples of Cartier duality.

Lemma 1.2.4. Given a finite flat group scheme G over R, the dual map of [n]G is [n]G∨.

Proof. For an arbitrary R-algebra B, the dual map of [n]G sends each f ∈ G∨(B) =
HomB-grp(GB, (Gm)B) to f ◦ [n]G = [n]G∨(f). �

Proposition 1.2.5. For every positive integer n, we have (Z/nZ)∨ ' µn.

Proof. By the affine description given in Example 1.1.6, we can write Z/nZ ' Spec (A)

where A '
n−1⊕
i=0

Rei with the comultiplication, counit, and coinverse given by

µ(ei) =
∑
p+q=i

ep ⊗ eq, ε(ei) =

{
1 for i = 0

0 otherwise
, ι(ei) = e−i.

Let mA : A ⊗R A ! A and s : R ! A respectively denote the ring multiplication map and
structure morphism. Let { e∨i } be the dual basis for A∨ := HomR-mod(A,R) such that

e∨i (ej) =

{
1 if i = j,

0 otherwise.

By Theorem 1.2.3, we have an R-algebra structure on A∨, defined by µ∨ and ε∨, and a group
scheme structure on (Z/nZ)∨ ∼= Spec (A∨) with m∨A, s

∨, and ι∨ as the comultiplication, counit,
and coinverse. In addition, it is not hard to see that the dual maps are given by

µ∨(e∨i ⊗ e∨j ) = e∨i+j , ε∨(1) = e∨0 , m∨A(e∨i ) = e∨i ⊗ e∨i , s∨(ei) = 1, ι∨(e∨i ) = e∨−i.

Hence, by the affine description given in Example 1.1.6, the map A∨ ! R[t]/(tn − 1) given
by e∨i 7! ti induces an isomorphism of R-group schemes (Z/nZ)∨ ' µn as desired. �



22 II. FOUNDATIONS OF p-ADIC HODGE THEORY

Proposition 1.2.6. Suppose that R has characteristic p. Then the R-group scheme αp is
self-dual.

Proof. By the affine description given in Example 1.1.6, we have αp = Spec (R[t]/(tp))
with the comultiplication, counit, and coinverse given by

µ(ti) =
∑
p+q=i

(
i

p

)
tp ⊗ tq, ε(ti) =

{
1 if i = 0

0 otherwise
, ι(ti) = (−t)i.

Let us set A := R[t]/(tp) for notational simplicity. Let mA : A ⊗R A ! A and s : R ! A
respectively denote the ring multiplication map and structure morphism. Let { fi } be the
dual basis for A∨ := HomR-mod(A,R) such that

fi(t
j) =

{
1 if i = j,

0 otherwise.

By Theorem 1.2.3, we have an R-algebra structure on A∨, defined by µ∨ and ε∨, and a group
scheme structure on α∨p

∼= Spec (A∨) with m∨A, s
∨, and ι∨ as the comultiplication, counit, and

coinverse. In addition, it is not hard to see that the dual maps are given by

µ∨(fi ⊗ fj) =

(
i+ j

i

)
fi+j , ε∨(1) = 0,

m∨A(fi) =
∑
p+q=i

fp ⊗ fq, s∨(fi) =

{
1 if i = 0

0 otherwise
, ι∨(fi) = (−1)ifi.

Hence the ring homomorphism A∨ ! A given by fi 7! ti/i! induces an isomorphism of group
schemes α∨p ' αp as desired. �

Remark. When R has characteristic p, the underlying schemes of µp and αp are isomorphic
as we have a ring isomorphism R[t](tp)! R[t]/(tp− 1) given by t 7! t+ 1. Propositions 1.2.5
and 1.2.6 together show that they are not isomorphic as group schemes.

Proposition 1.2.7. Let f : A ! B be an isogeny of abelian schemes over a ring R. Then
the kernel of the dual map f∨ is naturally isomorphic to the Cartier dual of ker(f).

Proof. By definition, we have an exact sequence

0 −! ker(f) −! A f
−! B −! 0

which gives rise to a long exact sequence

0 −! Hom(B,Gm) −! Hom(A,Gm) −! Hom(ker(f),Gm) −! Ext1(B,Gm) −! Ext1(A,Gm).

Note that the first two group schemes are trivial; in fact, abelian schemes are proper and thus
admit no nontrivial maps to any affine scheme. We also have identifications

Hom(ker(f),Gm) ∼= ker(f)∨, Ext1(B,Gm) ∼= B∨, Ext1(A,Gm) ∼= A∨

where A∨ and B∨ denote the dual abelian schemes of A and B, respectively. Furthermore, we
may identify the last arrow in the above sequence as f∨. We thus obtain an exact sequence

0 −! ker(f)∨ −! B∨ f∨
−! A

which yields the desired isomorphism ker(f)∨ ∼= ker(f∨). �

Corollary 1.2.8. Given an abelian scheme A over a ring R with the dual abelian scheme
A∨, we have a natural isomorphism A[n]∨ ∼= A∨[n].
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Let us conclude this subsection by the exactness of Cartier duality.

Lemma 1.2.9. Let f : H ↪−! G be a closed embedding of R-group schemes. Then we have
ker(f∨) ∼= (G/H)∨, where f∨ denotes the dual map of f .

Proof. For each R-algebra B we get

ker(f∨)(B) = ker
(

HomB-grp(GB, (Gm)B)
f
−! HomB-grp(HB, (Gm)B)

)
∼= HomB-grp((G/H)B, (Gm)B) = (G/H)∨(B)

by the universal property of the quotient group scheme GB/HB
∼= (G/H)B. �

Proposition 1.2.10. Given a short exact sequence of finite flat R-group schemes

0 −! G′ −! G −! G′′ −! 0,

the Cartier duality gives rise to a short exact sequence

0 −! G′′∨ −! G∨ −! G′∨ −! 0.

Proof. Let f and g respectively denote the maps G′ ! G and G! G′′ in the given short
exact sequence, and let f∨ and g∨ denote their dual maps. Injectivity of g∨ is easy to verify
using surjectivity of g and Definition 1.2.1. In addition, Lemma 1.2.9 yields ker(f∨) ∼= G′′∨.
Hence it remains to prove that f∨ is surjective. Since G′′∨ ∼= ker(f∨) is a closed subgroup of
G∨, we have a quotient G∨/G′′∨ as a finite flat group scheme by Theorem 1.1.9. Then f∨

gives rise to a homomorphism G∨/G′′∨ ! G′∨. This is an isomorphism since its dual map

G′ −! (G∨/G′′∨)∨ ∼= ker((g∨)∨) ∼= ker(g)

is an isomorphism by the given exact sequence, where we use Lemma 1.2.9 for the identification
(G∨/G′′∨)∨ ∼= ker((g∨)∨). Hence we obtain surjectivity of f∨ as desired. �

1.3. Finite étale group schemes

In this subsection, we discuss several basic facts about finite étale group schemes. Such
group schemes naturally arise in the study of Galois representations by the following fact:

Proposition 1.3.1. Assume that R is a henselian local ring with maximal ideal m and residue
field k := R/m. There is an equivalence of categories

{ finite étale group schemes over R } ∼
−! { finite abelian groups with a continuous Γk-action }

defined by G 7! G(ksep).

Proof. Let m : Spec (k) ! Spec (R) denote the geometric point associated to m ∈
Spec (R). Then Γk = Gal(ksep/k) is identified with the étale fundamental group π1(Spec (R),m).
Hence we have an equivalence of categories

{ finite étale schemes over R } ∼
−! { finite sets with a continuous Γk-action }

defined by T 7! T (ksep). The desired equivalence follows by passing to the corresponding
categories of commutative group objects. �

Remark. It is not hard to see that the functor in Proposition 1.3.1 is compatible with the
notion of order in both categories. Hence Proposition 1.3.1 provides an effective way to study
finite étale group schemes in terms of finite groups.

Corollary 1.3.2. If R is a henselian local ring with the residue field k, the special fiber functor
yields an equivalence of categories

{ finite étale group schemes over R } ∼
−! { finite étale group schemes over k } .
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Let us now explain a very useful criteria for étaleness of finite flat group schemes.

Definition 1.3.3. Let G = Spec (A) be an affine group scheme over R. We define the
augmentation ideal of G to be the kernel of the counit ε : A! R.

Lemma 1.3.4. Let G = Spec (A) be an affine group scheme over R with the augmentation
ideal I. Then A ' R⊕ I as an R-module.

Proof. The assertion follows from the observation that the structure morphism R ! A

splits the exact sequence 0 −! I −! A
ε
−! R −! 0. �

Proposition 1.3.5. Let G = Spec (A) be an affine group scheme over R with the augmenta-
tion ideal I. Then we have I/I2 ⊗R A ' ΩA/R and I/I2 ' ΩA/R ⊗A A/I.

Proof. Let us write m, e and i respectively for the multiplication, unit section and inverse
of G. We have a commutative diagram

G×R G G×R G

G

(g,h)7!(g,gh−1)

∆ (id,e)

where the horizontal map can be also written as (pr1,m)◦(id, i). We verify that the horizontal
map is an isomorphism by writing down the inverse map (x, y) 7! (x, y−1x).

Let us now consider the induced commutative diagram on the level of R-algebras

A⊗R A A⊗R A

A
x⊗y 7!xy

∼

x⊗y 7!x·ε(y)

where ε denotes the counit of G. Let J denote the kernel of the left downward map. Then
we have an identification

ΩA/R
∼= J/J2. (1.6)

Moreover, as Lemma 1.3.4 yields a decomposition

A⊗R A ' A⊗R R⊕A⊗R I,
we deduce that the kernel of the right downward map is A ⊗R I. Hence the horizontal map
induces an isomorphism between the two kernels J ' A⊗RI, which also yields an isomorphism
J2 ' (A⊗R I)2 ∼= A⊗R I2. We thus have

J/J2 ' (A⊗R I)/(A⊗R I2) = A⊗R (I/I2),

thereby obtaining a desired isomorphism ΩA/R ' A ⊗R (I/I2) by (1.6). We then complete
the proof by observing

ΩA/R ⊗A (A/I) '
(
(I/I2)⊗R A

)
⊗A A/I ∼= (I/I2)⊗R A/I ' I/I2

where the last isomorphism follows from the fact that A/I ' R. �

Remark. The multiplication map on G defines a natural action on ΩA/R. We can geometri-
cally interpret the statement of Proposition 1.3.5 as follows:

(1) An invariant form under this action should be determined by its value along the unit
section, or equivalently its image in I/I2.

(2) An arbitrary form should be written as a function on G times an invariant form.
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Corollary 1.3.6. Let G = Spec (A) be a finite flat group scheme over R with the augment
ideal I. Then G is étale if and only if I = I2.

Proof. Since G is flat over R, it is étale if and only if ΩA/R = 0. Hence the assertion
follows from Proposition 1.3.5. �

We discuss a number of important applications of Corollary 1.3.6.

Proposition 1.3.7. Every finite flat constant group scheme is étale.

Proof. Let M be a finite group. By the affine description in Example 1.1.6, we have

M ' Spec
(⊕
i∈M

Rei

)
with the counit given by the projection to Re1M . Hence the augment ideal of M is given by

I =
⊕
i 6=1M

Rei.

Since I has its own ring structure, we find I = I2. Thus M is étale by Corollary 1.3.6. �

Proposition 1.3.8. Assume that R is an algebraically closed field of characteristic p. Then
Z/pZ is a unique finite étale group scheme of order p. In particular, µp and αp are not étale.

Proof. Note that Z/pZ is étale by Proposition 1.3.7. For uniqueness, we use Proposition

1.3.1 together with the fact that Z/pZ is a unique group of order p. The last statement then
follows by observing that µp and αp are not isomorphic to Z/pZ for being nonreduced. �

Proposition 1.3.9. Let G be a finite flat group scheme over R. Then G is étale if and only
if the (scheme theoretic) image of the unit section is open.

Proof. Let us write G = Spec (A) where A is a locally free R-algebra of finite rank. Let
I denote the augment ideal of G so that the (scheme theoretic) image of the unit section is
Spec (A/I). By Corollary 1.3.6, G is étale if and only if I = I2. It is thus enough to show that
the closed embedding Spec (A/I) ↪! Spec (A) is an open embedding if and only if I = I2.

Suppose that I = I2. By Nakayama’s lemma there exists an element f ∈ A with f −1 ∈ I
and fI = 0. Note that f is idempotent; indeed, we quickly check f2 = f(f −1) +f = f . Now
consider the natural map A! Af . This map is surjective since we have

a

fn
=

af

fn+1
=
af

f
=
a

1
for any a ∈ A.

Moreover, as fI = 0, the last identity shows that I is contained in the kernel. Conversely,
for any element a in the kernel we have fna = 0 for some n, or equivalently fa = 0 as f is
idempotent, and consequently see that a = −(f−1)a+fa = −(f−1)a ∈ I. We thus get a ring
isomorphism A/I ∼= Af , thereby deducing that the closed embedding Spec (A/I) ↪! Spec (A)
is an open embedding.

For the converse, we now suppose that Spec (A/I) ↪! Spec (A) is an open embedding.
Then it is a flat morphism, implying that the ring homomorphism A � A/I is also flat.
Hence we obtain a short exact sequence

0 −! I ⊗A A/I −! A⊗A A/I −! A/I ⊗A A/I −! 0,

which reduces to
0 −! I/I2 −! A/I −! A/I −! 0

where the third arrow is the identity map. We thus deduce that I/I2 = 0 as desired. �
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Theorem 1.3.10. Let G be a finite flat group scheme over R. If the order of G is invertible
in R, then G is étale.

Proof. Let us write G = Spec (A) where A is a locally free R-algebra of finite rank. As
usual, we let m, e, µ, and ε respectively denote the multiplication map, unit section, comulti-
plication, and counit of G. We have commutative diagrams of schemes

Spec (R) G

G×R G

(e,e)

e

m

G G

G×R G

(id,e) (e,id)

id

m

which induce the following commutative diagrams of R-algebras:

R A

A⊗R A

ε

µε⊗ε

A A

A⊗R A

id

µ

id⊗ε ε⊗id (1.7)

Let I = ker(ε) be the augmentation ideal of G, and let x be an arbitrary element in I.
Since ε(x) = 0, the first diagram in (1.7) implies µ(x) ∈ ker(ε ⊗ ε). Moreover, since Lemma
1.3.4 yields a decomposition

A⊗R A ' (R⊗R R)⊕ (I ⊗R R)⊕ (R⊗R I)⊕ (I ⊗R I)

as an R-module, we deduce that

ker(ε⊗ ε) ' (I ⊗R R)⊕ (R⊗R I)⊕ (I ⊗R I).

Hence we have µ(x) ∈ a⊗ 1 + 1⊗ b+ I ⊗R I for some a, b ∈ I. Then we find a = b = x using
the second diagram of (1.7), thereby deducing

µ(x) ∈ x⊗ 1 + 1⊗ x+ I ⊗R I. (1.8)

We assert that [n]G for each n ≥ 1 acts as multiplication by n on I/I2. For each n ≥ 1,
let [n]A : A! A denote the R-algebra map induced by [n]G. We have commutative diagrams

G G

G×R G

[n]G

([n−1]G,id) m

A A

A⊗R A

[n]A

µ[n−1]A⊗id

The second diagram and (1.8) together yield

[n]A(x) ∈ [n− 1]A(x) + x+ I2 for each x ∈ I.

Since [1]A = idA, the desired assertion follows by induction.

Now we let m be the order of G. Since [m]G factors through the unit section of G by
Theorem 1.1.10, its induced map on ΩA/R factors as ΩA/R ! ΩR/R ! ΩA/R. As ΩR/R = 0,

we deduce that [m]G induces a zero map on ΩA/R, and also on ΩA/R ⊗A A/I ' I/I2 by
Proposition 1.3.5. On the other hand, as noted in the preceding paragraph [m]G acts as a
multiplication by m on I/I2, which is an isomorphism if m is invertible in R. Hence we have
I/I2 = 0 if m is invertible in R, thereby completing the proof by Corollary 1.3.6. �

Corollary 1.3.11. Every finite flat group scheme over a field of characteristic 0 is étale.
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1.4. The connected-étale sequence

For this subsection, we assume that R is a henselian local ring with residue field k. Under
this assumption, we have a number of useful criteria for connectedness or étaleness of finite
flat R-group schemes.

Lemma 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

Proof. This is immediate from a general fact as stated in [Sta, Tag 02GM]. �

Lemma 1.4.2. Let T be a finite scheme over R. Then the following conditions are equivalent:

(i) T is connected.

(ii) T is a spectrum of a henselian local finite R-algebra.

(iii) The action of Γk on T (k) is transitive.

Proof. Let us write T ' Spec (B) where B is a finite R-algebra. Since R is a henselian
local ring, we have

B '
n∏
i=1

Bi

where each Bi is a henselian local ring. Note that each Ti := Spec (Bi) corresponds to a
connected component of T . Hence we see that (i) implies (ii). Conversely, (ii) implies (i) since
the spectrum of a local ring is connected.

Let ki denote the residue field of Bi for each i. Then we have

T (k) = HomR-alg(B, k) ∼=
n∐
i=1

Homk(ki, k)

where Γk acts through k. Since each Homk(ki, k) is the orbit of the action of Γk, we deduce
the equivalence between (i) and (iii). �

Corollary 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

Remark. This is a special case of SGA 4 1/2, Exp. 1, Proposition 4.2.1, which says that
for every proper R-scheme the special fiber functor induces a bijection between the connected
components.

Definition 1.4.4. Given a finite flat group scheme G over R, we denote by G◦ the connected
component of the unit section.

Proposition 1.4.5. For a finite flat R-group scheme G, we have G◦(k) = 0.

Proof. As usual, we write G = Spec (A) with some free R-algebra A of finite rank. By
Lemma 1.4.2, we have G◦ = Spec (A◦) for some henselian local free R-algebra A◦ of finite
rank. As the unit section factors through G◦, it induces a surjective ring homomorphism
A◦ ! R. Denoting its kernel by J , we obtain an isomorphism A◦/J ' R, which induces an
isomorphism between the residue fields of A◦ and R. We thus find that

G◦(k) = HomR-alg(A◦, k) ∼= Homk(k, k) = 0

as desired. �

Theorem 1.4.6. Let G be a finite flat group scheme over R. Then G◦ is a closed subgroup
scheme of G such that the quotient Gét := G/G◦ is étale, thereby giving rise to a short exact
sequence of finite flat group schemes

0 −! G◦ −! G −! Gét −! 0.

https://stacks.math.columbia.edu/tag/02GM
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Proof. Proposition 1.4.5 implies that (G◦×RG◦)(k) ∼= G◦(k)×G◦(k) is trivial. Therefore
G◦ ×R G◦ is connected by Lemma 1.4.2.

We assert that G◦ is a closed subgroup of G. By construction, the unit section of G factors
through G◦. Moreover, as G◦ ×R G◦ is connected, its image under the multiplication map is
a connected subscheme of G containing the unit section, and thus lies in G◦. Similarly, the
inverse of G maps G◦ into itself by connectedness. We thus obtain the desired assertion.

Since G◦ is a closed subgroup of G, the quotient Gét = G/G◦ is a finite flat group scheme.
Its unit section G◦/G◦ has an open image as the connected component G◦ is open in G by
the noetherian hypothesis on R. Hence we find that Gét is étale by Proposition 1.3.9, thereby
completing the proof. �

Remark. We make several remarks about Theorem 1.4.6 and its proof.

(1) Theorem 1.4.6 essentially reduces the study of finite flat group schemes over R to two
cases, namely the connected case and the étale case. We have seen in the previous
subsection that finite étale group schemes are relatively easy to understand (in terms
of finite groups with a Galois action). Hence most technical difficulties for us will
arise in trying to understand (a system of) connected finite flat group schemes.

(2) Theorem 1.4.6 also holds when G is not commutative. To see this, we only have to
prove that G◦ is a normal subgroup scheme of G. Let us consider the map

ν : G◦ ×R G! G

defined by (g, h) 7! hgh−1. Let H be an arbitrary connected component of G. As
G◦ ×R H is connected by Lemma 1.4.2 and Proposition 1.4.5, its image under ν is
a connected subscheme of G containing the unit section, and thus lies in G◦. Since
G is a disjoint union of its connected component, we find that the image of ν lies in
G◦, thereby deducing the desired assertion.

(3) We present an alternative proof of the fact that G◦×RG◦ is connected. By Corollary
1.4.3, connectedness of G◦ implies connectedness of G◦k. Moreover, the image of the
unit section yields a k-point in G◦k. Hence G◦k is geometrically connected by a general
fact as stated in [Sta, Tag 04KV]. Then another general fact as stated in [Sta, Tag
0385] implies that G◦k×Spec (k)G

◦
k is connected. We thus deduce the desired assertion

by Corollary 1.4.3.

Definition 1.4.7. Given a finite flat group scheme G over R, we refer to the exact sequence
in Theorem 1.4.6 as the connected-étale sequence of G.

Corollary 1.4.8. A finite flat scheme G is connected if and only if G(k) = 0.

Proof. This follows from Lemma 1.4.2, Proposition 1.4.5, and Theorem 1.4.6. �

Corollary 1.4.9. A finite flat group scheme G over R is étale if and only if G◦ = 0.

Proof. If G◦ = 0, then G is étale by Theorem 1.4.6. Conversely, if G is étale the (scheme
theoretic) image of the unit section is closed by definition and open by Proposition 1.3.9,
thereby implying that G◦ is precisely the image of the unit section. �

Corollary 1.4.10. Let f : G ! H be a homomorphism of finite flat R-group schemes with
H étale. Then f uniquely factors through Gét := G/G◦.

Proof. The image of G◦ should lie in H◦, which is trivial by Corollary 1.4.9. Hence the
assertion follows from the universal property of the quotient Gét = G/G◦. �

https://stacks.math.columbia.edu/tag/04KV
https://stacks.math.columbia.edu/tag/0385
https://stacks.math.columbia.edu/tag/0385
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Proposition 1.4.11. Assume that R = k is a perfect field. For every finite flat group k-
scheme G, the connected-étale sequence canonically splits.

Proof. Let us write Gét := G/G◦ as in Theorem 1.4.6. We wish to prove that the
homomorphism G � Gét admits a section. If k has characteristic 0, the assertion is obvious
by Corollary 1.3.11 and Corollary 1.4.9. Hence we may assume that k has characteristic p.

As usual, we write G = Spec (A) with some free k-algebra A of finite rank. Let Gred be the
reduction of G; in other words, Gred = Spec (A/n) where n denotes the nilradical of A. Since
k is perfect, the product of two reduced k-schemes is reduced by some general facts as stated
in [Sta, Tag 020I] and [Sta, Tag 035Z]. In particular, Gred ×k Gred must be reduced. Hence
its image under the multiplication map should factor through Gred. Similarly, the inverse of
G maps Gred into itself by reducedness. In addition, the unit section of G factors through
Gred as k is reduced. We thus deduce that Gred is a closed subgroup of G.

Note that Gred is étale for being finite and reduced over k. Hence it suffices to prove that
the homomorphism G� Gét induces an isomorphism Gred ' Gét. We have an identification
Gred(k) by reducedness of k. Moreover, the homomorphism G� Gét induces an isomorphism
induces an isomorphism G(k) ' Gét(k) by Theorem 1.4.6 and Corollary 1.4.8. We thus find
that the homomorphism Gred ' Gét induces an isomorphism Gred(k) ' Gét(k) which is clearly
Γk-equivariant. The desired assertion now follows by Proposition 1.3.1. �

Remark. Interested readers can find an example of non-split connected-étale sequence over
a non-perfect field in [Pin, §15].

Example 1.4.12. Let E be an elliptic curve over Fp. By Theorem 1.4.6, the group scheme
E[p] admits a connected-étale sequence

0 −! E[p]◦ −! E[p] −! E[p]ét −! 0.

Moreover, we have E[p](Fp) ' E[p]ét(Fp) by Proposition 1.4.5. Hence Proposition 1.3.1

implies that E[p]ét has order 1 when E is supersingular and order p when E is ordinary.

Let us now assume that E is ordinary. We have E[p]ét ' Z/pZ by Proposition 1.3.8, and
thus obtain

µp ' (Z/pZ)∨ ↪−! E[p]∨ ' E∨[p] ' E[p]

by Proposition 1.2.5, Proposition 1.2.10, Corollary 1.2.8 and self-duality of E. Since µp is
of order p and not étale as noted in Proposition 1.3.8, it must be connected by Theorem
1.4.6. We thus have an embedding µp ↪−! E[p]◦, which must be an isomorphism by order
consideration. Hence the connected-étale sequence for E[p] becomes

0 −! µp −! E[p] −! Z/pZ −! 0.

We thus find E[p] ' µp × Z/pZ by Proposition 1.4.11.

Remark. If E is supersingular, it is quite difficult to describe the p-torsion subgroup scheme
E[p]. Note that E[p] must be a self-dual connected finite flat group scheme of order p2 over
Fp. It is known that the only simple objects in the category of finite flat group schemes over

Fp are µp, αp,Z/pZ, and Z/`Z for all ` 6= p. In particular, αp is the only connected simple

object with connected Cartier dual. Hence E[p] should fit into an exact sequence

0 −! αp −! E[p] −! αp −! 0.

It turns out that E[p] is a unique self-dual finite flat group scheme over Fp which arises as a
non-splitting self-extension of αp.

https://stacks.math.columbia.edu/tag/020I
https://stacks.math.columbia.edu/tag/035Z
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1.5. The Frobenius morphism

For this subsection, we assume that R = k is a field of characteristic p. We let σ denote
the Frobenius endomorphism of k.

We introduce several crucial notions for studying finite flat group schemes over k.

Definition 1.5.1. Let T = Spec (B) be an affine k-scheme.

(1) We define the Frobenius twist of T by T (p) := T ×k,σ k. In other words, T (p) fits into
the cartesian diagram

T (p) T

Spec (k) Spec (k)

where the bottom map is induced by σ.

(2) The absolute Frobenius of T is the morphism FrobT : T ! T induced by the p-th
power map on B.

(3) The relative Frobenius of T (over k) is the morphism ϕT : T ! T (p) = T ×Spec (k),σ k
defined by (FrobT , s) where s denotes the structure morphism of T over k.

(4) For any r ≥ 1, we inductively define the pr-Frobenius twist and the relative pr-
Frobenius of T as follows:

T (pr) :=
(
T (pr−1)

)(p)
and ϕrT := ϕ

T (pr−1) ◦ ϕr−1
T .

Lemma 1.5.2. Let T = Spec (B) be an affine k-scheme. Then ϕrT is induced by the k-algebra

homomorphism B(pr) := B ⊗k,σr k ! B defined by x⊗ c 7! c · xpr .

Proof. The assertion follows from alternative identifications

T (pr) ∼= T ×k,σr k and ϕrT = (FrobrT , s) : T ! T (pr) ∼= T ×k,σr k
where s denotes the structure morphism of T over k. �

Lemma 1.5.3. Let T and U be k-schemes.

(a) We have identifications (T ×k U)(p) ∼= T (p) ×k U (p) and ϕ(T×kU) = (ϕT , ϕU ).

(b) Any k-scheme morphism T ! U yields a commutative diagram

T T (p)

U U (p)

ϕT

ϕU

where the second vertical arrow is the induced by the first vertical arrow.

Proof. Considering the Frobenius twist as a functor on k-schemes, both statements are
straightforward to verify using Definition 1.5.1. �

Corollary 1.5.4. Let G be a finite flat k-scheme, and let q = pr for some r ≥ 1.

(1) The q-Frobenius twist G(q) is a finite flat k-group scheme.

(2) The relative q-Frobenius ϕrG is a group scheme homomorphism.

Proof. By induction, we immediately reduce to the case p = q. Then the desired asser-
tions easily follow from Lemma 1.5.3 �
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Definition 1.5.5. Let G be a finite flat k-group scheme. We define the Verschiebung of G
by ψG := ϕ∨G∨ , i.e., the dual map of the relative Frobenius of G∨.

Remark. From the affine description of the Frobenius twist as noted in Lemma 1.5.2, we

obtain a natural identification
(
(G∨)(p)

)∨ ∼= G(p). We can thus regard ψG as a homomorphism

from G(p) to G.

Lemma 1.5.6. Let G and H be finite flat k-group schemes.

(a) We have an identification ψ(G×kH) = (ψG, ψH).

(b) Any k-group scheme homomorphism G! H yields a commutative diagram

G G(p)

H H(p)

ψG

ψH

where the second vertical arrow is the induced by the first vertical arrow.

Proof. This is obvious by Lemma 1.5.3 and Definition 1.5.5 �

Proposition 1.5.7. We have the following statements:

(1) ϕαp = ψαp = 0.

(2) ϕµp = 0 and ψµp is an isomorphism.

(3) ϕZ/pZ is an isomorphism and ψZ/pZ = 0.

Proof. All statements are straightforward to verify using the affine descriptions from
Example 1.1.6 and the duality results from Propositions 1.2.5 and 1.2.6. �

The Frobenius and Verschiebung turn out to satisfy a very simple relation.

Proposition 1.5.8. Given a finite flat k-group scheme G, we have

ψG ◦ ϕG = [p]G and ϕG ◦ ψG = [p]G(p) .

Proof. The following proof is excerpted from [Pin, §14].

Let us write G = Spec (A) and G∨ = Spec (A∨) with some free k-algebra A of finite rank.

We also write A(p) := A ⊗k,σ k and (A∨)(p) := A∨ ⊗k,σ k. We let ϕA and ϕA∨ denote the
k-algebra maps inducing ϕG and ϕG∨ , respectively. Note that, by definition, ψG is induced
by ϕ∨A∨ .

By the Lemma 1.5.2, the map ϕA : A(p) ! A is given by x ⊗ c 7! c · xp. We also have a
similar description for ϕA∨ , which yields a commutative diagram

(A∨)(p) = A∨ ⊗k,σ k SympA∨ A∨

(A∨)⊗p

f⊗c 7! [c·f⊗p]

ϕA∨

⊗fi 7!
∏
A∨ fi

(1.9)
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where
∏
A∨ denotes the ring multiplication in A∨. Note that the left horizontal map is k-

algebra homomorphism since k has characteristic p. By dualizing (1.9) over k, we obtain a
commutative diagram

A (A⊗p)Sp A⊗k,σ k = A(p)

A⊗p

ϕ∨
A∨

λ

(1.10)

where Sp denotes the symmetric group of order p.

Let us give an explicit description of the map λ in (1.10). It is not hard to see that
any nontrivial Sp-orbit in (A⊗p)Sp has p terms and thus maps to 0 as k has characteristic p.
Hence we only need to specify λ(a⊗p) for each a ∈ A. By the isomorphism A ∼= (A∨)∨, we
may identify each a ∈ A with εa ∈ (A∨)∨ defined by εa(f) = f(a) for all f ∈ A∨. Since λ is
the dual map of the left horizontal map in (1.9), for each f ⊗ c ∈ A∨ ⊗k,σ k ∼= (A⊗k,σ k)∨ we
have

λ(a⊗p)(f ⊗ c) = (εa)
⊗p([c · f⊗p]) = c · f(a)p = (f ⊗ c)(a⊗ 1) = (εa ⊗ 1)(f ⊗ c)

where the third equality follows from the identity f(a) ⊗ c = 1 ⊗ c · f(a)p in A ⊗k,σ k. We
thus find λ(a⊗p) = a⊗ 1.

By our discussion in the preceding paragraph, the diagram (1.10) extends to a commuta-
tive diagram

A (A⊗p)Sp A⊗k,σ k = A(p)

A⊗p A

ϕ∨
A∨

λ

ϕA

⊗xi 7!
∏
A xi

where
∏
A denotes the ring multiplication in A. Note that the diagonal map is given by

the comultiplication of A, as it is the dual of the diagonal map in (1.10) given by the ring
multiplication in A∨. Hence we obtain a commutative diagram of k-group schemes

G G(p)

G×p G

ψG

x1···xp [(x1,··· ,xp)

(x,··· ,x) [x

ϕG

which yields ψG ◦ ϕG = [p]G. Then we use Lemma 1.5.3 and Lemma 1.5.6 to obtain a
commutative diagram

G(p) G(p2)

G G(p)

ϕ
G(p)

ψG ψ
G(p)

ϕG

which yields ϕG ◦ ψG = ψG(p) ◦ ϕG(p) = [p]G(p) . �

Let us now present a couple of important applications of the Frobenius morphism.
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Proposition 1.5.9. Let G = Spec (A) be a finite flat k-group scheme.

(1) G is connected if and only if ϕrG vanishes for some r.

(2) G is étale if and only if ϕG is an isomorphism.

Proof. Let I denote the augmentation ideal of A. Note that I is a maximal ideal since
A/I ' k. We also have a k-space decomposition A ' k ⊕ I by Lemma 1.3.4.

Suppose that G is connected. Lemma 1.4.2 implies that A is a local ring, which is artinian
for being finite over a field k. Hence its maximal ideal I is nilpotent, implying that there exists
some r with xp

r
= 0 for all x ∈ I. We thus find ϕrG = 0 by the decomposition A ' k ⊕ I and

Lemma 1.5.2

Conversely, suppose that ϕrG = 0 for some r. By observing that ϕrG induces an isomorphism

G(k) ' G(p)(k), we find that G(k) is trivial. Hence G is connected by Corollary 1.4.8. We
have thus proved (1).

Next we suppose that ϕG is an isomorphism. Then ϕG induces an isomorphism on G◦; in
other words, ϕG◦ is an isomorphism. This inductively implies that ϕ(G◦)(pr) is an isomorphism

for all r, and consequently that ϕrG◦ is an isomorphism for all r. On the other hand, we have
ϕrG◦ = 0 for some r by (1). We thus find G◦ = 0, which implies étaleness of G by Corollary
1.4.9.

Conversely, we assume that G is étale. Note that ker(ϕG) is connected by (1), which must
be trivial as G◦ is trivial by Corollary 1.4.9. We then conclude that ϕG is an isomorphism by
comparing the orders of G and G(p). �

Proposition 1.5.10. The order of a connected finite flat k-group scheme is a power of p.

Proof. Let G = Spec (A) be a connected finite flat k-group scheme of order n. We
proceed by induction on n. The assertion is trivial when n = 1, so we only need to consider
the inductive step.

Let us set H := ker(ϕG). Denote by I be the augmentation ideal of G, and choose elements
x1, · · · , xd ∈ I which lift a basis of I/I2. Connectedness of G implies that A is a local ring
with maximal ideal I, as noted in the proof of Proposition 1.5.9. Hence x1, · · · , xd generate
I by Nakayama’s Lemma. In turn we have

H ' Spec (A/(xp1, · · · , x
p
d)) (1.11)

by the affine description of ϕG as noted in Lemma 1.5.2. We also have d > 0 by Corollary
1.3.6 as G is not étale by Corollary 1.4.9.

We assert that the order of H is pd. It suffices to show that the map

λ : k[t1, · · · , td]/(tp1, · · · , t
p
d) −! A/(xp1, · · · , x

p
d)

defined by ti 7! xi is an isomorphism. Surjectivity is clear by definition, so we only need to
show injectivity. Recall that we have a k-space decomposition A ' k ⊕ I by Lemma 1.3.4.
We let π : A� I/I2 be the natural projection map, and denote by µ the comultiplication of
A. For each j = 1, · · · , d, we define a k-algebra map

Dj : A A⊗k A A⊗k I/I2 A
µ (id,π)

where the last arrow is induced by the map I/I2 ! k taking xj to 1 and xi to 0 for all i 6= j.
Note that

µ(xi) ∈ xi ⊗ 1 + 1⊗ xi + I ⊗k I for all i = 1, · · · , d
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as noted in (1.8) in the proof of Theorem 1.3.10. We thus find λ
∂

∂tj
= Djλ as both sides agree

on ti’s. This means that ker(λ) is stable under
∂

∂tj
for each j = 1, · · · , d. In particular, every

nonzero element in ker(λ) with minimal degree must be constant. Hence ker(λ) is either the
zero ideal or the unit ideal. However, the latter is impossible since λ is surjective. We thus
deduce that ker(λ) is trivial as desired.

As G is connected, we have ϕrG = 0 for some r by Proposition 1.5.9. Then ϕrG = 0 induces
a trivial map on G/H, which means that G/H is also connected by Proposition 1.5.9. Hence
its order n/pd must be a power of p by the induction hypothesis. We thus conclude that n is
a power of p as desired. �

Corollary 1.5.11. Let G be a connected finite flat k-group scheme with the augmentation
ideal I. If ϕG = 0, the order of G is pd where d is the dimension of I/I2 over k.

Proof. This follows from the proof of Proposition 1.5.10. �

Remark. Proposition 1.5.9 and Proposition 1.5.10 will be very useful for us, even when the
base ring is not necessarily a field. In fact, if the base ring is a local ring with perfect residue
field of characteristic p, we can check the order, connectedness, or étaleness of a finite flat
group scheme by passing to the special fiber as noted in Lemma 1.4.1 and Lemma 1.4.2.

As a demonstration, we present another proof of Theorem 1.3.10 in the case where R is
a local ring, without using Theorem 1.1.10. As remarked above, we may assume that R is a
field by passing to the special fiber. By Corollary 1.4.9 it suffices to prove that G◦ is trivial.
When R has characteristic p, this immediately follows from Proposition 1.5.10 by invertibility
of the order. Let us now suppose that R has characteristic 0. Arguing as in the proof of
Proposition 1.5.10, we can show

G◦ ' Spec (R[t1, · · · , td])
for some d. Then we must have d = 0 as G is finite over R, thereby deducing that G◦ is trivial
as desired.

In fact, with some additional work we can even prove Theorem 1.1.10 when the base ring
is a field, as explained in [Tat97, §3.7]. The curious reader can also find Deligne’s proof of
Theorem 1.1.10 in [Sti, §3.3]. We are also very close to a complete classification of all simple
objects in the category of finite flat group schemes over k as remarked after Example 1.4.12.
Instead of pursuing it here, we refer the readers to [Sti, Theorem 54] for a proof.
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2. p-divisible groups

While finite flat group schemes have an incredibly rich theory, their structure is too simple
to capture much information about p-adic Galois representations. More explicitly, as stated
in Proposition 1.3.1, they are only capable of carrying information about Galois actions on
finite groups. This fact leads us to consider a system of finite flat group schemes.

In this section, we develop some basic theory about p-divisible groups, which play a crucial
role in many parts of p-adic Hodge theory and arithmetic geometry. While our focus is on their
relation to the study of p-adic Galois representations, we also try to indicate their applications
to the study of abelian varieties. The primary references for this section are Demazure’s book
[Dem72] and Tate’s paper [Tat67].

2.1. Basic definitions and properties

Throughout this section, we let R denote a noetherian base ring.

Definition 2.1.1. Let G = lim−!
v>0

Gv be an inductive limit of finite flat group schemes over R

with group scheme homomorphisms iv : Gv ! Gv+1. We say that G is a p-divisible group of
height h over R if the following conditions are satisfied:

(i) Each Gv has order pvh.

(ii) Each iv fits into an exact sequence

0 Gv Gv+1 Gv+1.
iv [pv ]

For each v and t, we often write Gv[p
t] := ker([pt]Gv).

Remark. The condition (ii) amounts to saying that each Gv is identified via iv with Gv+1[pv].
We may thus regard G as an fpqc sheaf where G(T ) := lim−!Gv(T ) for each R-scheme T .

Example 2.1.2. We present some important examples of p-divisible groups.

(1) The constant p-divisible group over R is defined by Qp/Zp := lim−!Z/pvZ with the

natural inclusions. Note that the height of Qp/Zp is 1.

(2) The p-power roots of unity over R is defined by µp∞ := lim−!µpv with the natural
inclusions. Note that the height of µp∞ is 1.

(3) Given an abelian scheme A over R, we define its p-divisible group by A[p∞] :=
lim−!A[pv] with the natural inclusions. The height of A[p∞] is 2g where g is the
dimension of A.

Remark. Another standard notation for µp∞ is Gm[p∞]. Tate used a similar notation Gm(p)
in [Tat67]. These notations are motivated by the identifications µpv ∼= Gm[pv] := ker([pv]Gm).

Definition 2.1.3. Let G = lim−!Gv and H = lim−!Hv be p-divisible groups over R.

(1) A system f = (fv) of group scheme homomorphisms fv : Gv ! Hv is called a
homomorphism from G to H if it is compatible with the transition maps for G and
H in the sense of the commutative diagram

Gv Hv

Gv+1 Hv+1

fv

iv jv

fv+1

where iv and jv are transition maps of G and H, respectively.
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(2) Given a homomorphism f = (fv) from G to H, we define its kernel by ker(f) :=
lim−! ker(fv).

Example 2.1.4. Given a p-divisible group G = lim−!Gv over R, we define the multiplication

by n on G by a homomorphism [n]G := ([n]Gv).

Lemma 2.1.5. Let G = lim−!Gv be a p-divisible group over R. There exist homomorphisms
iv,t : Gv ! Gv+t and jv,t : Gv+t ! Gt for each v and t with the following properties:

(i) The map iv,t induces an isomorphism Gv ∼= Gv+t[p
v].

(ii) There exists a commutative diagram

Gv+t Gv+t

Gt

[pv ]

jv,t it,v

(iii) We have a short exact sequence

0 Gv Gv+t Gt 0.
iv,t jv,t

Proof. Let us denote the transition map Gv ! Gv+1 by iv, and take iv,t := iv+t−1◦· · ·◦iv
for each v and t. We may regard Gv as a closed subgroup scheme of Gv+t via iv,t. The property
(i) is then obvious for t = 1 by definition. For t > 1, we inductively proceed by observing

Gv+t[p
v] ∼= Gv+t[p

v+t−1] ∩Gv+t[p
v] ∼= Gv+t−1 ∩Gv+t[p

v] ∼= Gv+t−1[pv].

Now (i) implies that each Gv is annihilated by [pv]. More generally, the image of [pv]Gv+t

is annihilated by [pt] for each v and t. Hence the map [pv]Gv+t uniquely factors over a map
jv,t : Gv+t ! Gt, thereby yielding a commutative diagram as stated in (ii).

We now have left exactness of the sequence in (iii) by (i) and (ii). Moreover, jv+t induces
a closed embedding Gv+t/Gv ↪! Gt, which is easily seen to be an isomorphism by comparing
the orders. We thus deduce the exactness of the sequence in (iii). �

Corollary 2.1.6. Let G = lim−!Gv be a p-divisible group over R.

(1) We have an identification Gv ∼= ker([pv]G) for each v.

(2) The homomorphism [p] is surjective as a map of fpqc shaves.

Remark. Corollary 2.1.6 shows that the kernel of a homomorphism between two p-divisible
groups may not be a p-divisible group.

We note some fundamental properties of p-divisible groups inherited from finite flat group
schemes.

Proposition 2.1.7. Let G = lim−!Gv be a p-divisible group of height h over R.

(1) For each v, we have an exact sequence

Gv+1
[pv ]
−! Gv+1

jv
−! Gv −! 0.

(2) The inductive system G∨ := lim−!G∨v with the j∨v as transition maps is a p-divisible
group of height h over R.

(3) There is a canonical isomorphism (G∨)∨ ∼= G.



2. p-DIVISIBLE GROUPS 37

Proof. Let us take iv,t and jv,t as in Lemma 2.1.5. Then we have a commutative diagram

G1

0 Gv Gv+1 Gv+1 Gv 0

i1,v

iv=iv,1

jv,1

[pv ] jv=j1,v

where the horizontal arrows form an exact sequence. In particular, we obtain an exact se-
quence as stated in (1). Moreover, as [pv]∨Gv+1

= [pv]G∨v+1
by Lemma 1.2.4, we have a dual

exact sequence

0 −! G∨v
j∨v−! G∨v+1

[pv ]
−! G∨v+1

by Proposition 1.2.10. Hence we deduce (2) and (3) by Theorem 1.2.3. �

Definition 2.1.8. Given a p-divisible group G over R, we refer to the p-divisible group G∨

in Proposition 2.1.7 as the Cartier dual of G.

Example 2.1.9. The Cartier duals for p-divisible groups from Example 2.1.2 are as follows:

(1) We have an identification (Qp/Zp)∨ ∼= µp∞ by Proposition 1.2.5.

(2) Given an abelian scheme A over R, we have A[p∞]∨ ∼= A∨[p∞] by Corollary 1.2.8
where A∨ denotes the dual abelian scheme of A.

Proposition 2.1.10. Assume that R is a henselian local ring with residue field k. Let G =
lim−!Gv be a p-divisible group over R, and write Gét

v := Gv/G
◦
v for each v. Then we have a

short exact sequence of p-divisible groups

0 −! G◦ −! G −! Gét −! 0

where G◦ = lim−!G◦v and Gét = lim−!Gét
v .

Proof. Let iv : Gv ! Gv+1 denote the transition map. It suffices to construct homo-
morphisms i◦v : G◦v ! G◦v+1 and iét

v : Gét
v ! Gét

v+1 so that the diagram

0 0 0

0 G◦v Gv Gét
v 0

0 G◦v+1 Gv+1 Gét
v+1 0

0 G◦v+1 Gv+1 Gét
v+1 0

i◦v iv iét
v

[pv ] [pv ] [pv ]

is commutative with exact rows and columns. Exactness of three rows directly follows from
Theorem 1.4.6, while exactness of the middle column is immediate by definition. In addition,
the bottom two squares clearly commute.

By Corollary 1.4.10, there is a unique choice of iét
v such that the top right square commutes.

We assert that the third column is exact with this choice. By Proposition 1.3.1, we may work
on the level of k-points. Since the first column vanishes on k-points by Proposition 1.4.5, all
horizontal arrows between the second and the third column become isomorphism on k-points.
Hence the desired exactness follows from exactness of the middle column.
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Let us now regard G◦v as a subgroup of Gv+1 via the embedding iv. Then G◦v must lie in
G◦v+1 for being connected. Hence there exists a unique closed embedding i◦v which makes the
top left square commutative.

It remains to show that the first column is exact with our choice of i◦v. As i◦v is a closed
embedding by construction, we only need to show that G◦v

∼= G◦v+1[pv] via i◦v. Indeed, as
G◦v is a subgroup of both Gv ∼= Gv+1[pv] and G◦v+1, it must be a subgroup of G◦v+1[pv].
Hence it remains to show that G◦v+1[pv] is a subgroup of G◦v. As G◦v+1[pv] is a subgroup of

Gv+1[pv] ∼= Gv, it suffices to show that G◦v+1[pv] is connected. Since G◦v+1(k) = 0 by Corollary

1.4.8, we have G◦v+1[pv](k) = 0 as well. Hence G◦v+1[pv] is connected by Corollary 1.4.8. �

Definition 2.1.11. Assume that R = k is a field of characteristic p. Let G = lim−!Gv be a
p-divisible group over k.

(1) The Frobenius twist of G is an inductive limit G(p) := lim−!G
(p)
v where the transition

maps are induced by the transition maps for G.

(2) We define the Frobenius of G by ϕG := (ϕGv) and the Verschiebung of G by ψG :=
(ψGv).

Proposition 2.1.12. Assume that R = k is a field of characteristic p. Let G be a p-divisible
group of height h over k.

(1) The Frobenius twist G(p) is a p-divisible group of height h over k.

(2) The Frobenius ϕG and the Verschiebung ψG are homomorphisms.

(3) We have ψG ◦ ϕG = [p]G and ϕG ◦ ψG = [p]G(p).

Proof. The statements (1) and (2) are straightforward to check using Lemma 1.5.3 and
Lemma 1.5.6. The statement (3) is a direct consequence of Proposition 1.5.8. �

We finish this subsection by describing a connection between p-divisible groups and con-
tinuous Galois representations.

Definition 2.1.13. Assume that R = k is a field. Given a p-divisible group G = lim−!Gv over
k, we define the Tate module of G by

Tp(G) := lim −Gv(k)

where the transition maps are induced by the homomorphisms jv,1 : Gv+1 � Gv from Lemma
2.1.5.

Proposition 2.1.14. Assume that R = k is a field with characteristic not equal to p. Then
we have an equivalence of categories

{ p-divisible groups over k } ∼
−! { finite free Zp-modules with a continuous Γk-action }

defined by G 7! Tp(G).

Proof. Let us first verify that the functor is well-defined. Let G = lim−!Gv be an arbitrary

p-divisible group over k. Since Gv is killed by [pv] as noted in Lemma 2.1.5, each Gv(k) is a
finite free module over Z/pvZ with a continuous Γk-action. Hence Tp = lim −Gv(k) is a finite
free Zp-module with a continuous Γk-action.

As all finite flat k-group schemes of p-power order are étale by Theorem 1.3.10, we deduce
full faithfulness of the functor from Proposition 1.3.1. Hence it remains to prove essential
surjectivity of the functor. Let M be a finite free Zp-module with a continuous Γk-action. As
each Mv := M/(pv) gives rise to a finite étale group scheme Gv by Proposition 1.3.1, we form
a p-divisible group G = lim−!Gv with Tp(G) = M . �
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2.2. Serre-Tate equivalence for connected p-divisible groups

In this subsection, we assume that R is a complete noetherian local ring with residue field
k of characteristic p.

Definition 2.2.1. Let G = lim−!Gv be a p-divisible group over R.

(1) We say that G is connected if each Gv is connected, and étale if each Gv is étale.

(2) The p-divisible groups G◦ and Gét as constructed in Proposition 2.1.10 are respec-
tively called the connected part and the étale part of G.

Example 2.2.2. Below are essential examples of étale/connected p-divisible groups.

(1) The constant p-divisible group Qp/Zp is étale by Proposition 1.3.7.

(2) The p-power roots of unity µp∞ is connected by Corollary 1.4.8.

For the rest of this subsection, we let A := R[[t1, · · · , td]] denote the ring of power series
over R with d variables. Note that A ⊗̂RA ∼= R[[t1, · · · , td, u1, · · · , ud]]. We often write
T := (t1, · · · , td) and U := (u1, · · · , ud).

Let us introduce the key objects for studying connected p-divisible groups over R.

Definition 2.2.3. A continuous ring homomorphism µ : A ! A ⊗̂RA is called a (commuta-
tive) formal group law of dimension d over R if the power series Φi(T,U) := µ(ti) ∈ A ⊗̂RA
form a family Φ(T,U) := (Φi(T,U)) that satisfies the axioms

(i) associativity: Φ(T,Φ(U, V )) = Φ(Φ(T,U), V ),

(ii) unit section: Φ(T, 0d) = T = Φ(0d, T ),

(iii) commutativity: Φ(T,U) = Φ(U, T )

where V = (v1, · · · , vd) is a tuple of d independent variables.

Example 2.2.4. The multiplicative formal group law over R is a 1-dimensional formal group
law µĜm : R[[t]]! R[[t, u]] defined by µĜm(t) = t+ u+ tu = (1 + t)(1 + u)− 1.

Lemma 2.2.5. Let µ be a formal group law of dimension d over R.

(1) We have commutative diagrams

A A ⊗̂RA

A ⊗̂RA A ⊗̂RA ⊗̂RA

µ

µ µ⊗̂id

id⊗̂µ

A ⊗̂RA A ⊗̂RA

A

x⊗̂y 7!y⊗̂x

µµ

(2) The ring homomorphism ε : A ! R given by ε(ti) = 0 fits into commutative diagrams

A A A ⊗̂RR

A ⊗̂RA

id

µ

∼

id⊗̂ε

A A R⊗̂RA

A ⊗̂RA

id

µ

∼

ε⊗̂id

(3) There exists a ring homomorphism ι : A ! A that fits into the commutative diagram

A A ⊗̂RA

R A

ε

µ

ι⊗̂idid⊗̂ι
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Proof. Let Φ(T,U) be as in Definition 2.2.3. The statements (1) and (2) immediately
follow from the axioms in Definition 2.2.3. Moreover, by setting Ii(t) := ι(ti), the statement
(3) amounts to existence of a family I(T ) = (Ii(T )) of d power series with

Φ(T, I(T )) = 0 = Φ(I(T ), T ).

By the axiom (iii) in Definition 2.2.3, we only need to consider the equation Φ(T, I(T )) = 0.
We wish to present the desired family as a limit I(T ) = lim

j!∞
Pj(T ) where each Pj is a family

of degree j polynomials in t1, · · · , td with

(a) Pj = Pj−1 mod (t1, · · · , td)j ,
(b) Φ(Pj(T ), T ) = 0 mod (t1, · · · , td)j+1.

As we have Φ(T,U) = T + U mod (t1, · · · , td, u1, · · · , ud)2 by the axiom (ii) in Definition
2.2.3, we must set P1(T ) := −T . Now we inductively construct Pj(T ) for all j ≥ 1. By the
property (b) for Pj , there exists a unique homogeneous polynomial ∆j(T ) of degree j+1 with

∆j(T ) = −Φ(Pj(T ), T ) mod (t1, · · · , td)j+2.

Setting Pj+1(T ) := Pj(T ) + ∆j(T ), we immediately verify the property (a) for Pj+1, and also
verify the property (b) for Pj+1 by

Φ(Pj+1(T ), T ) = Φ(Pj(T ) + ∆j(T ), T ) = Φ(Pj(T ), T ) + ∆j(T ) = 0 mod (t1, · · · , td)j+2

where the second equality comes from observing ∆j(T )2 = 0 mod (t1, · · · , td)j+2 by degree
consideration. �

Remark. Lemma 2.2.5 shows that a formal group law µ over R amounts to a formal group
structure on the formal scheme Spf(A ) with µ, ε, and ι as the comultiplication, counit, and
coinverse.

Definition 2.2.6. Let µ and ν be formal group laws of dimension d over R. A continuous ring
homomorphism γ : A ! A is called a homomorphism from µ to ν if the following diagram
commutes:

A A ⊗̂RA

A A ⊗̂RA

ν

γ γ⊗̂γ

µ

Remark. Note that γ goes from the power series ring for ν to the power series ring for µ.
This is so that γ corresponds to a formal group homomorphism between the formal groups
associated to µ and ν in the sense of the remark after Lemma 2.2.5.

Lemma 2.2.7. Let µ and ν be formal group laws of dimension d over R, represented by fam-
ilies of power series Φ(T,U) := (Φi(T,U)) and Ψ(T,U) := (Ψi(T,U)) with Φi(T,U) := µ(ti)
and Ψi(T,U) := ν(ti). A continuous ring homomorphism γ : A ! A is a homomorphism
from µ to ν if and only if the family Ξ(T ) = (Ξi(T )) of d power series (in d variables) defined
by Ξi(T ) := γ(ti) satisfies Ψ(Ξ(T ),Ξ(U)) = Ξ(Φ(T,U)).

Proof. The diagram in Definition 2.2.6 becomes commutative if and only if we have
f(Ψ(Ξ(T ),Ξ(U))) = f(Ξ(Φ(T,U))) for every f(T ) ∈ A . �

Example 2.2.8. Let µ be a formal group law of dimension d over R. The multiplication by
n on µ, denoted by [n]µ, is inductively defined by [1]µ := idA and [n]µ := ([n− 1]µ⊗̂id) ◦ µ.

Remark. As expected, [n]µ corresponds to the multiplication by n map on the formal group
associated to µ in the sense of the remark after Lemma 2.2.5.
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Definition 2.2.9. Let µ be a formal group law of dimension d over R.

(1) The ideal I := (t1, · · · , td) is called the augmentation ideal of µ.

(2) We say that µ is p-divisible if [p]µ : A ! A is finite flat in the sense that it makes
A a free module of finite rank over itself.

Remark. The ideal I is the kernel of the ring homomorphism ε : A ! R from Lemma
2.2.5, which corresponds to the counit of the formal group associated to µ as remarked after
Lemma 2.2.5. Hence the notion of augmentation ideal for formal group laws is coherent with
the notion of augmentation ideal for affine group schemes as defined in Definition 1.3.3.

It turns out that every p-divisible formal group law yields a connected p-divisible group.

Proposition 2.2.10. Let µ be a p-divisible formal group law over R with the augmentation
ideal I . Define Av := A /[pv]µ(I ) and µ[pv] := Spec (Av) for each v.

(1) Each µ[pv] carries the natural structure of a connected finite flat R-group scheme.

(2) The inductive limit µ[p∞] := lim−!µ[pv] with the natural transition maps is a connected
p-divisible group over R.

Proof. Let us take ε and ι as in Lemma 2.2.5. For each v, we have

Av = A /[pv]µ(I ) ∼= A /I ⊗A ,[pv ]µ A ∼= R⊗A ,[pv ]µ A . (2.1)

Hence µ[pv] = Spec (Av) has the structure of an R-group scheme with 1⊗ µ, 1⊗ ε, and 1⊗ ι
as the comultiplication, counit, and coinverse.

Denote by r the rank of A over [p]µ(A ) as a free module. A simple induction shows that
the rank of A over [pv]µ(A ) is rv. We then deduce from (2.1) that Av is finite free over R of
rank rv. Thus µ[pv] is indeed finite flat of order rv over R.

Moreover, as R is a local ring, the power series ring A is also a local ring. Hence Av =
A /[pv]µ(I ) is a local ring as well. We thus deduce that µ[pv] is connected.

By Proposition 1.5.10, the order of µ[p] is ph for some h. Then our discussion above shows
that µ[pv] has order pvh. Furthermore, the ring homomorphism

Av = A /[pv]µ(I ) −! [p]µ(A )/[pv+1]µ(I )

induced by [p] is an isomorphism for being a surjective map between two free R-algebras of
the same rank. Hence we get a surjective ring homomorphism

Av+1 = A /[pv+1]µ(I )� [p]µ(A )/[pv+1]µ(I ) ' Av,

which induces an embedding iv : µ[pv] ↪! µ[pv+1]. It is then straightforward to check that iv
identifies µ[pv] as the kernel of [pv] on µ[pv+1]. We thus conclude that µ[p∞] := lim−!µ[pv] is a
connected p-divisible group of height h over R. �

Remark. Let Gµ denote the formal group associated to µ. Then by construction we have
µ[pv] ∼= Gµ[pv] for each v. With this observation the proof of (2) becomes almost trivial.

Definition 2.2.11. Given a p-divisible formal group law µ over R, we define its associated
connected p-divisible group over R to be µ[p∞] as constructed in Proposition 2.2.10.

Example 2.2.12. Consider the multiplicative formal group law µĜm introduced in Example

2.2.4. An easy induction shows [pv]µĜm
(t) = (1+t)p

v−1 for each v. We then find µĜm [pv] ∼= µpv

for each v by the affine description in Example 1.1.6, thereby deducing µĜm [p∞] = µp∞ .
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The association described in Proposition 2.2.10 defines a functor from the category of
p-divisible formal group laws to the category of connected p-divisible groups. Our next goal
is to prove a theorem of Serre and Tate that this functor is an equivalence of categories.

Proposition 2.2.13. Let G = lim−!Gv be a connected p-divisible group over R with Gv =

Spec (Av) for each v. We have a continuous isomorphism

lim −(Av ⊗R k) ' k[[t1, · · · , td]]
for some positive integer d.

Proof. Let us write G := G ×R k and Gv := Gv ×R k. As G is connected, each Gv is
connected by Corollary 1.4.3. Hence each Av ⊗R k is a local ring by Lemma 1.4.2.

Let us take Hv := ker(ϕv
G

). Note that each Hv must be a closed subgroup scheme of

G[pv] = Gv since ψv
G
◦ ϕv

G
= [pv]G by Proposition 2.1.12. Hence we have Hv ' Spec (Bv) for

some free k-algebra Bv with a surjective k-algebra map Av ⊗R k � Bv. In addition, Bv is a
local ring for being a quotient of a local ring Av. We also note that each Gv is a subgroup of
ker(ϕw

G
) = Hw for some large w by Proposition 1.5.9. In other words, for each v we have a

surjective k-algebra map Bw � Av ⊗R k. Hence we obtain a continuous isomorphism

lim −Av ⊗R k ' lim −Bv. (2.2)

Let Jv be the augmentation ideal of Hv, and take J := lim − Jv. By definition, we have

Bv/Jv ' k. Let y1, · · · , yd be elements of J which lift a basis for J1/J
2
1 . As H1

∼= ker(ϕHv)
by construction, we use Lemma 1.5.2 to obtain a cartesian diagram

k ∼= (Bv/Jv)⊗R,σ k B1

B
(p)
v
∼= Bv ⊗R,σ k Bv

x⊗c 7!c·xp

which yields B1
∼= Bv/J

(p)
v where J

(p)
v denotes the ideal generated by p-th powers of elements

in Jv. We thus find J1
∼= Jv/J

(p)
v and consequently J1/J

2
1
∼= Jv/J

2
v . Therefore the images of

y1, · · · , yd form a basis of Jv/J
2
v , and thus generate the ideal Jv by Nakayama’s lemma. In

particular, we have a surjective k-algebra map

k[t1, · · · , td]� Bv

which sends each ti to the image of yi in Bv. Furthermore, as ϕvHv vanishes on Hv by
construction, the above map induces a surjective k-algebra map

k[t1, · · · , td]/(tp
v

1 , · · · , t
pv

d )� Bv (2.3)

by Lemma 1.5.2. By passing to the limit we obtain a continuous ring homomorphism

k[[t1, · · · , td]]� lim −Bv.

By (2.2), it remains to prove that this map is an isomorphism. It suffices to prove that
the k-algebra homomorphism (2.3) is an isomorphism for each v. By surjectivity, we only
need to show that the source and the target have equal dimensions over k. In other words,
it is enough to show that the dimension of Bv over k is pdv, or equivalently that Hv has
order pdv. When v = 1, this is an immediate consequence of Corollary 1.5.11. Let us now

proceed by induction on v. As ϕv+1
Hv+1

: Hv+1 ! H
(p)
v+1 vanishes, it should factor through

ker(ϕv
G

(p)) ∼= H
(p)
v . Moreover, as ϕG ◦ ψG = [p]

G
(p) is surjective by Corollary 2.1.6, ϕG is also
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surjective. Since the preimage of H
(p)
v
∼= ker(ϕv

G
(p)) under ϕG must lie in ker(ϕv+1

G
) = Hv+1,

we deduce that the map Hv+1 ! H
(p)
v induced by ϕHv+1 is surjective. We thus obtain a short

exact sequence

0 H1 Hv+1 H
(p)
v 0.

ϕHv+1

As the order of H
(p)
v is the same as the order of Hv, we complete the induction step by the

multiplicativity of orders in short exact sequences. �

Lemma 2.2.14. Let µ be a formal group law of dimension d over R with the augmentation
ideal I . For each positive integer n, we have

[n]µ(ti) ∈ nti + I 2.

Proof. For each n, we define the family Ξn(T ) = (Ξn,i(T )) of d power series in d variables
by Ξn,i(T ) := [n]µ(ti). We can rewrite the desired assertion as

Ξn(T ) = nT mod I 2. (2.4)

Let us define the family Φ(T,U) = (Φi(T,U)) of d power series in 2d variables by Φi(T,U) :=
µ(ti). By the axiom (ii) in Definition 2.2.3 we have

Φ(T,U) = T + U mod (t1, · · · , td, u1, · · · , ud)2.

Hence the inductive formula [n]µ = ([n− 1]µ⊗̂id) ◦ µ yields

Ξn(T ) = Φ(Ξn−1(T ), T ) = Ξn−1(T ) + T mod I 2.

Moreover, we have Ξ1(T ) = T since [1]µ = idA . We thus obtain (2.4) by induction on n. �

Lemma 2.2.15. Let µ be a formal group law over R with the augmentation ideal I . Define
Av := A /[pv]µ(I ) for each v. Then we have a natural continuous isomorphism

A ∼= lim −Av.

Proof. Let us write m for the maximal idea of R and M := mA + I for the maximal
ideal of A . For each v we define Av := A /[pv]µ(I ), which is a free local R-algebra of finite
rank by Proposition 2.2.10. For each i and v we have Mw ⊆ [pv]µ(I )+miA for some w since
the algebra A /([pv]µ(I ) + miA ) = Av/m

iAv is local artinian. Moreover, by Lemma 2.2.14
we find [p]µ(I ) ⊆ pI + I 2 ⊆MI and thus [p]vµ(I ) ⊆MvI for all v. Hence for each i and

v we have [pv]µ(I ) + miA ⊆Mw for some w. We thus obtain

A ∼= lim −
w

A /Mw ∼= lim −
i,v

A /([pv]µ(I ) + miA ) ∼= lim −
v,i

Av/m
iAv ∼= lim −

v

Av

where the last isomorphism comes from the fact that each Av is m-adically complete for being
finite free over R by a general fact as stated in [Sta, Tag 031B]. �

Theorem 2.2.16 (Serre-Tate). There exists an equivalence of categories

{ p-divisible formal group laws over R } ∼
−! { connected p-divisible groups over R }

which maps each p-divisible formal group law µ over R to µ[p∞].

Proof. Let µ and ν be formal group laws of degree d over R. Let us define Av :=
A /[pv]µ(I ) and Bv := A /[pv]ν(I ). By Proposition 2.2.10 µ[pv] := Spec (Av) and ν[pv] :=
Spec (Bv) are connected finite flat R-group scheme. Let µv and νv denote the comultiplications
of µ[pv] and ν[pv]. We write Homνv ,µv(Bv, Av) for the set of R-algebra maps Bv ! Av
which are compatible with the comultiplications νv and µv, and Homν,µ(A ,A ) for the set of

https://stacks.math.columbia.edu/tag/031B
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continuous ring homomorphisms A ! A which are compatible with ν and µ in the sense of
the commutative diagram in Definition 2.2.6. By Lemma 2.2.15 we have

Hom(µ, ν) = Homν,µ(A ,A ) = Homν,µ(lim −Bv, lim −Av)

= lim −Homνv ,µv(Bv, Av) = lim−!HomR-grp(µ[pv], ν[pv]) = Hom(µ[p∞], ν[p∞]).

We thus deduce that the functor is fully faithful.

Let G = lim−!Gv be an arbitrary connected p-divisible group over R. We write Gv =

Spec (Av) where Av is a free local R-algebra of finite rank. Let pv : Av+1 ! Av denote the
R-algebra homomorphism induced by the transition map Gv ! Gv+1. Note that each pv is
surjective as the corresponding transition map Gv ! Gv+1 is a closed embedding.

By Proposition 2.2.13 we have a continuous isomorphism

k[[t1, · · · , td]] ' lim −(Av ⊗R k). (2.5)

We aim to lift this isomorphism to a homomorphism

f : A = R[[t1, · · · , td]]! lim −Av.

In other words, we construct a lift fv : A ! Av of each projection k[[t1, · · · , td]] � Av ⊗R k
so that the following diagram commutes:

A Av+1 Av+1 ⊗R k

Av Av ⊗R k

fv+1

fv
pv pv⊗id

After taking f1 to be any lift of the projection k[[t1, · · · , td]] � A1 ⊗R k, we proceed by
induction on v. Let us choose y1, · · · , yd ∈ Av+1 which lift the images of t1, · · · , td under
the projection k[[t1, · · · , td]] � Av+1 ⊗R k. Then pv(y1), · · · , pv(yd) should lift the images of
t1, · · · , td under the projection k[[t1, · · · , td]] � Av ⊗R k. Since fv is a lift of the projection
k[[t1, · · · , td]]� Av ⊗R k, we have fv(ti)− pv(yi) ∈ mAv where m denotes the maximal ideal
of R. By surjectivity of pv, we may choose z1, · · · , zd ∈ mAv+1 with pv(zi) = fv(ti)− pv(yi).
Let us now define fv+1 : A ! Av+1 by setting fv+1(ti) = yi + zi. From our construction, we
quickly verify that fv+1 is a desired lift of the projection k[[t1, · · · , td]]� Av+1 ⊗R k.

We assert that f is indeed an isomorphism. Nakayama’s lemma implies surjectivity of
each fv, which in turn implies surjectivity of f . Moreover, we find lim −Av ' R[[u]] as an
R-module since each pv : Av+1 � Av admits an R-module splitting for being a surjective map
between two free R-modules. Hence f splits in the sense of R-modules as well. It is also clear
that this splitting is compatible with passage to the quotient modulo m. In particular, by the
isomorphism (2.5) we have ker(f) ⊗R k = 0, or equivalently m ker(f) = ker(f). Denoting by
M the maximal idea of A , we find

M ker(f) = (mA + (t1, · · · , td)) ker(f) = ker(f).

As A = R[[t1, · · · , td]] is noetherian, we deduce ker(f) = 0 by Nakayama’s lemma.

The formulation of f commutes with passage to quotients modulo mn for any n. Moreover,
the kernels of the projections A � Av form a system of open ideals in A as the R-algebras
Av are of finite length. Hence by a theorem of Chevalley as stated in [Mat87, Exercise 8.7]
we deduce that f is a continuous isomorphism.

Let us now denote the comultiplication ofGv by µv, and take µ : A ! A ⊗̂RA to be lim −µv
via the isomorphism f . The axioms for each comultiplication µv implies that µ fits in the
commutative diagrams in (1) and (2) of Lemma 2.2.5, which in turn implies that µ is indeed a
formal group law over R. Now let ηv,t : At ↪−! Av+t denote the injective ring homomorphism
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induced by jv,t : Gv+t � Gt as defined in Lemma 2.1.5. Since we have [pv]G = lim−! jv,t, the

isomorphism f yields an identification [pv]µ = lim − ηv,t. It is then straightforward to check that

[p]µ is finite flat, which means that µ is p-divisible. We then find µ[pv] ∼= Gv and µ[p∞] ∼= G,
thereby establishing the essential surjectivity of the functor. �

Remark. The last paragraph of the proof can be simplified by considering the formal group
Gµ associated to µ. In fact, as it makes sense to write Gµ ∼= lim−!Gv as a formal scheme, we

immediately obtain the identification Gµ[pv] ∼= Gv and the p-divisibility of Gµ by observing
[pv]G = lim−! jv,t. Then we complete the proof by identifying µ[pv] ∼= Gµ[pv] for each v as
remarked after Proposition 2.2.10.

Definition 2.2.17. Let G be a p-divisible group over R. We write µ(G) for the unique p-
divisible formal group law over R with µ(G)[p∞] ' G◦ as given by Theorem 2.2.16, and define
the dimension of G to be the dimension of µ(G).

Corollary 2.2.18. Let G be a p-divisible group over R. Let us write G := G ×R k. Then
ker(ϕG) has order pd where d is the dimension of G.

Proof. Proposition 1.5.9 implies that ker(ϕG) lies in G
◦

:= G◦×R k. Hence the assertion
follows from Proposition 2.2.13, Theorem 2.2.16, and their proofs. �

We finish this subsection by discussing several important applications of Theorem 2.2.16.

Theorem 2.2.19. Let G be a p-divisible group of height h over R. Let d and d∨ denote the
dimensions of G and G∨, respectively. Then we have h = d+ d∨.

Proof. Let us write G := G×R k and G = lim−!Gv where each Gv is a finite flat k-group

scheme. Note that ker(ϕG) must lie in G[p] ∼= G1 since ψG ◦ϕG = [p]G by Proposition 2.1.12.
In particular, we have ker(ϕG) ∼= ker(ϕG1

). We similarly find ker(ψG) ∼= ker(ψG1
).

Let us consider the diagram

0 ker(ϕG) G G
(p)

0

0 0 G G 0.

ϕG

[p]G ψG

id

The left square commutes since ker(ϕG) must lie in G[p] as already noted, while the right
square commutes by Proposition 2.1.12. In addition, the first row is exact since ϕG is surjective
as noted in the proof of Proposition 2.2.13, while the second row is visibly exact. Hence by
the snake lemma we obtain an exact sequence

0 ker(ϕG) ker([p]G) ker(ψG) 0. (2.6)

We now compute the order of ker(ψG) ∼= ker(ψG1
). As ψG1

= ϕ∨
G
∨
1

by definition, we may

identify ker(ψG1
) with the cokernel of ϕG∨1 by the exactness of Cartier duality. Moreover,

since G
∨
1 and (G

∨
1 )(p) have the same order, we use the mutiplicativity of orders in short exact

sequences to find that the cokernel of ϕ
G
∨
1

has the same order as ker(ϕ
G
∨
1
) ∼= ker(ϕ

G
∨). We

thus deduce from Corollary 2.2.18 that ker(ψG) has order pd
∨
.

Note that ker(ϕG) has order pd by Corollary 2.2.18. Since ker([p]G) ∼= G1 has order ph,

the multiplicativity of orders in the exact sequence (2.6) yields ph = pd+d∨ , or equivalently
h = d+ d∨ as desired. �
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Proposition 2.2.20. Assume that k is an algebraically closed field of characteristic p. Every
p-divisible group of height 1 over k is isomorphic to either Qp/Zp or µp∞.

Proof. Let G = lim −Gv be an étale p-divisible group of height h over k. Proposition
2.1.10 implies that G is either étale or connected.

Let us first consider the case where G is étale. Then each Gv is a finite étale R-group
scheme of order phv such that Gv = Gv+1[pv]. By Proposition 1.3.1, each Gv(k) is an abelian
group of order phv such that Gv(k) is the pv-torsion subgroup of Gv+1(k). An easy induction
shows Gv(k) ' Z/pvZ, which in turn implies Gv ' Z/pvZ by Proposition 1.3.1. We thus find

G ' Qp/Zp.

Let us now turn to the case where G is connected. As G has dimension 1, Theorem 2.2.19
implies that G∨ is zero dimensional and thus étale. Hence by the discussion in the preceding
paragraph we find G∨ ' Qp/Zp or equivalently G ' (Qp/Zp)∨ ' µp∞ . �

Remark. The argument in the second paragraph readily extends to show that every étale

p-divisible group of height h over k is isomorphic to Qp/Zph.

Example 2.2.21. Let E be an ordinary elliptic curve over Fp. By Proposition 2.1.10 we have
an exact sequence

0 −! E[p∞]◦ −! E[p∞] −! E[p∞]ét −! 0.

Note that both E[p∞]◦ and E[p∞]ét are nontrivial since both E[p]◦ and E[p]ét := E[p]/E[p]◦

are nontrivial as seen in Example 1.4.12. Since E[p∞] has height 2, we deduce that E[p∞]◦

and E[p∞]ét both have height 1. Hence the above exact sequence becomes

0 −! µp∞ −! E[p∞] −! Qp/Zp −! 0

by Proposition 2.2.20. Moreover, this exact sequence splits as it splits at every finite level by
Proposition 1.4.11. We thus find

E[p∞] ' Qp/Zp × µp∞ .

Remark. Let us extend our discussion in Example 2.2.21 to describe the Serre-Tate deforma-
tion theory for ordinary elliptic curves. The general Serre-Tate deformation theory says that a
deformation of an abelian variety over a perfect field of characteristic p is equivalent to a defor-
mation of its p-divisible group. Hence the deformation theory of an ordinary elliptic curve E
over Fp is the same as the deformation theory for the p-divisible group E[p∞] ' Qp/Zp×µp∞ .

Moreover, as our discussion in Example 1.4.12 equally applies for ordinary elliptic curves
over any deformation ring, every deformation of E should be an extension of Qp/Zp by µp∞ .

We thus find that the deformation space of E is naturally isomorphic to Ext1(Qp/Zp, µp∞).

Furthermore, by the short exact sequence

0 −! Zp −! Qp −! Qp/Zp −! 0

we obtain an identification Ext1(Qp/Zp, µp∞) ∼= Hom(Zp, µp∞), which has the natural struc-

ture of a formal torus of dimension 1 as described in Example 2.2.4. The unit section corre-
sponds to a unique deformation of E, called the canonical deformation of E, for which the
exact sequence as described in Example 1.4.12 splits. The canonical deformation is also a
unique deformation of E which lifts all endomorphisms of E.
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2.3. Dieudonné-Manin classification

Our main goal in this subsection is to introduce two classes of semilinear algebraic objects
that are closely related to p-divisible groups. We begin by recalling without proof that the
ring of Witt vectors over a perfect Fp-algebra satisfies the following universal property:

Lemma 2.3.1. Let A be a perfect Fp-algebra, and let R be a p-adically complete ring. Denote
by W (A) the ring of Witt vectors over A. Let π : A −! R/pR be a ring homomorphism.
Then π uniquely lifts to a multiplicative map π̂ : A −! R and a ring homomorphism π :
W (A) −! R. In addition, we have

π

( ∞∑
n=0

[an]pn

)
=
∞∑
n=0

π̂(an)pn for every an ∈ A

where [an] denotes the Teichmüler lift of an in W (A).

Remark. For a proof, we refer the readers to [Ked15, Lemma 1.1.6].

Example 2.3.2. Let W (A) be the ring of Witt vectors over a perfect Fp-algebra A. By
Lemma 2.3.1 the p-th power map on A uniquely lifts to an endomorphism ϕW (A) on W (A),
called the Frobenius automorphism of W (A), which satisfies

ϕW (A)

( ∞∑
n=0

[an]pn

)
=
∞∑
n=0

[apn]pn for all an ∈ A

where [an] and [apn] respectively denote the Teichmüler lifts of an and apn in W (A). The
perfectness of A implies that ϕW (A) is indeed an automorphism.

Remark. For A = Fq, we have identificationW (Fq) ∼= Zp[ζq−1] where ζq−1 denotes a primitive
(q − 1)-st root of unity. Then the Frobenius automorphism σW (Fq) sends ζq−1 to ζpq−1 while
acting trivially on Zp.

For the rest of this section, we let k be a perfect field of characteristic p. We also write
W (k) for the ring of Witt vectors over k, and K0(k) for the fraction field of W (k).

Definition 2.3.3. Let σ denote the Frobenius automorphism of W (k).

(1) We define the Frobenius automorphism of K0(k) to be the unique field automorphism
on K0(k) which extends σ.

(2) Given two W (k)-modules M and N , we say that an additive map f : M −! N is
σ-semilinear if it satisfies

f(am) = σW (k)(a)f(m) for all a ∈W (k) and m ∈M.

(3) A Dieudonné module of rank r over k is a free W (k)-module M of rank r with a
σ-semilinear endomorphism ϕM , called the Frobenius endomorphism of M , whose
image contains pM .

(4) An isocrystal of rank r over K0(k) is an r-dimensional K0(k)-space N with a σ-
semilinear automorphism ϕN called the Frobenius automorphism of N .

(5) Given two Dieudonné modules M1 and M2 over k, a W (k)-linear map f : M1 −!M2

is called a morphism of Dieudonné modules if it satisfies

f(ϕM1(m)) = ϕM2(f(m)) for all m ∈M1.

(6) Given two isocrystals N1 and N2 over K0(k), a K0(k)-linear map g : N1 −! N2 is
called a morphism of isocrystals if it satisfies

g(ϕN1(n)) = ϕN2(g(n)) for all n ∈ N1.
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Lemma 2.3.4. Let σ denote the Frobenius automorphism of K0(k).

(1) Every Dieudonné module M over k naturally gives rise to an isocrystal M [1/p] =
M ⊗W (k) K0(k) over K0(k) with the Frobenius automorphism ϕM ⊗ 1.

(2) Given an isocrystal N over K0(k), the dual space N∨ = HomK0(k)(N,K0(k)) is
naturally an isocrystal over K0(k) with the Frobenius automorphism ϕN∨ given by

ϕN∨(f)(n) = σ(f(ϕ−1
N (n))) for all f ∈ N∨ and n ∈ N.

(3) Given two isocrystals N1 and N2 over K0(k), the vector space N1 ⊗K0(k) N2 is nat-
urally an isocrystal over K0(k) with the Frobenius automorphism ϕN1 ⊗ ϕN2.

Proof. All statements are straightforward to verify using Definition 2.3.3. �

Remark. The category of Dieudonné modules over k also admits a natural notion of tensor
product and dual.

Example 2.3.5. Let N be an isocrystal of rank r over K0(k). Lemma 2.3.4 implies that
det(N) = ∧r(N) is naturally an isocrystal of rank 1 over K0(k), which we refer to as the
determinant of N .

We now introduce several fundamental theorems that allow us to study p-divisible groups
and abelian varieties over k using semilinear algebraic objects defined in Definition 2.3.3. We
won’t provide their proofs, as we will only use these theorems as motivations for some key
constructions in Chapter III and IV. The readers may find an excellent exposition of these
theorems in [Dem72, Chapters III and IV].

Theorem 2.3.6 (Dieudonné [Die55]). There is an exact anti-equivalence of categories

D : { p-divisible groups over k } ∼
−! {Dieudonné modules over k }

such that for an arbitrary p-divisible group G over k we have the following statements:

(1) The rank of D(G) is equal to the height of G.

(2) G is étale if and only if ϕD(G) is bijective.

(3) G is connected if and only if ϕD(G) is topologically nilpotent.

(4) [p]G induces the multiplication by p on D(G).

(5) There exists a canonical identification D(G∨)[1/p] ∼= D(G)[1/p]∨.

Definition 2.3.7. We refer to the functor D described in Theorem 2.3.6 as the Dieudonné
functor.

Example 2.3.8. Let σ denote the Frobenius automorphism of W (k).

(1) D(Qp/Zp) is isomorphic to W (k) together with ϕD(Qp/Zp) = σ.

(2) D(µp∞) is isomorphic to W (k) together with ϕD(µp∞ ) = pσ.

(3) If E is an ordinary elliptic curve over k, we have D(E[p∞]) 'W (k)⊕2 together with
ϕD(E[p∞]) = σ ⊕ pσ.

Remark. We can also define the Verschiebung endomorphism ψ on W (k) which satisfies

ψ

( ∞∑
n=0

[an]pn

)
=

∞∑
n=1

[an−1]pn for all an ∈ k

where [an] denotes the Teichmüler lift of an in W (k). It is then straightforward to check that
σ ◦ ψ and ψ ◦ σ are both equal to the multiplication by p on W (k). Hence we can recover
Proposition 1.5.8 by applying Theorem 2.3.6 to the first example above.
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Definition 2.3.9. A homomorphism f : G ! H of p-divisible groups over k is called an
isogeny if it is surjective (as a map of fpqc sheaves) with finite flat kernel.

Example 2.3.10. We present some important examples of isogenies between p-divisible
groups.

(1) Given a p-divisible group G over k, the homomorphisms [p]G, ϕG, and ψG are all
isogenies.

(2) An isogeny A! B of two abelian varieties over k induces an isogeny A[p∞]! B[p∞].

Proposition 2.3.11. A homomorphism f : G! H of p-divisible groups over k is an isogeny
if and only if the following equivalent conditions are satisfied.

(i) The induced map D(H)! D(G) is injective.

(ii) The induced map D(H)[1/p]! D(G)[1/p] is an isomorphism.

Corollary 2.3.12. Let G be a p-divisible group over k. The isogeny class of G is determined
by the isomorphism class of the isocrystal D(G)[1/p].

Definition 2.3.13. Let N be an isocrystal of rank r over K0(k).

(1) The degree of N is the largest integer deg(N) with ϕdet(N)(1) ∈ pdeg(N)W (k), where
ϕdet(N) denotes the Frobenius automorphism of det(N).

(2) We write rk(N) for the rank of N , and define the slope of N by µ(N) :=
deg(N)

rk(N)
.

Example 2.3.14. Let λ = d/r be a rational number written in lowest terms with r > 0.
The simple isocrystal of slope λ over K0(k), denoted by N(λ), is the K0(k)-space K0(k)⊕r

together with the σ-semilinear automorphism ϕN(λ) given by

ϕN(λ)(e1) = e2, · · · , ϕN(λ)(er−1) = er, ϕN(λ)(er) = pde1,

where e1, · · · , er denote the standard basis vectors. It is straightforward to verify that N(λ)
is of rank r, degree d, and slope λ.

Theorem 2.3.15 (Manin [Man63]). Every isocrystal N over K0(k) admits a unique direct
sum decomposition of the form

N '
l⊕

i=1

N(λi)
⊕mi

for some λi ∈ Q with λ1 < λ2 < · · · < λl.

Definition 2.3.16. Let N be an isocrystal over K0(k) with a direct sum decomposition

N '
l⊕

i=1

N(λi)
⊕mi

for some λi ∈ Q with λ1 < λ2 < · · · < λl. For each i, let us write λi = di/ri for the lowest
form with ri > 0.

(1) Each λi is called a Newton slope of N with multiplicity mi.

(2) The Newton polygon of N , denoted by Newt(N), is the lower convex hull of the
points (0, 0) and (m1r1 + · · ·+miri,m1d1 + · · ·+midi) in R2.

Example 2.3.17. For an ordinary elliptic curve E over k, we have an isomorphism

D(E[p∞])[1/p] ' N(0)⊕N(1).

The Newton polygon of D(E[p∞])[1/p] connects the points (0, 0), (1, 0), and (2, 1).
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Proposition 2.3.18. Let N be an isocrystal over K0(k). Then we have N ' D(G)[1/p]
for some p-divisible group G of height h and dimension d over k if and only if the following
conditions are satisfied:

(i) N is of rank h and degree d.

(ii) Every Newton slope λ of N satisfies 0 ≤ λ ≤ 1.

Theorem 2.3.19 (Serre-Honda-Tate [Tat71], Oort [Oor00]). Let N be an isocrystal over
K0(k). There exists a principally polarized abelian variety A of dimension g over k with
N ' D(A[p∞])[1/p] if and only if the following conditions are satisfied:

(i) N is of rank 2g and degree g.

(ii) Every Newton slope λ of N satisfies 0 ≤ λ ≤ 1.

(iii) If λ ∈ Q occurs as a Newton slope of N , then 1− λ occurs as a Newton slope of N
with the same multiplicity.

Remark. The necessity part is easy to verify by Proposition 2.3.18. The main difficulty lies
in proving the sufficiency part, which was initially conjectured by Manin [Man63].

Definition 2.3.20. Let A be a principally polarized abelian variety of dimension g over k.

(1) We define its Newton polygon by Newt(A) := Newt(D(A[p∞])[1/p]).

(2) We say that A is ordinary if Newt(A) connects the points (0, 0), (g, 0), and (2g, g).

(3) We say that A is supersingular if Newt(A) connects the points (0, 0) and (2g, g).

Example 2.3.21. Let A be an ordinary abelian variety of dimension g over k. A priori, this
means that there exists an isogeny A[p∞]! µgp∞ × (Qp/Zp)g. We assert that there exists an

isomorphism
A[p∞] ' µgp∞ × (Qp/Zp)g.

By Proposition 2.1.10 we have an exact sequence

0 −! A[p∞]◦ −! A[p∞] −! A[p∞]ét −! 0.

Moreover, this sequence splits as it splits at every finite level by Proposition 1.4.11. Hence
we have a decomposition

A[p∞] ' A[p∞]◦ ×A[p∞]ét.

Proposition 2.3.18 implies that A[p∞]ét should correspond to the slope 0 part of Newt(A),
and thus have height g. We then deduce A[p∞]ét ' (Qp/Zp)g by the remark after Proposition

2.2.20, and A[p∞]◦ ' (A[p∞]ét)∨ ' µgp∞ by self-duality of A[p∞].

Remark. We can also argue as in the remark after Example 2.2.21 to deduce that the
deformation space of A has the structure of a formal torus of dimension g(g + 1)/2.

Proposition 2.3.22. For an abelian variety A over k, there exist a natural identification

H1
cris(A/W (k)) ∼= D(A[p∞]).

Remark. In light of the crystalline comparison theorem as introduced in Chapter I, Theorem
1.2.4, this identification provides a powerful tool to study abelian varieties and their moduli
spaces, such as (local) Shimura varieties of PEL or Hodge type, using p-adic Hodge theory
and the theory of Dieudonné modules/isocrystals.
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3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some tech-
nical results from algebraic number theory, we prove two fundamental theorems regarding
p-divisible groups, namely the Hodge-Tate decomposition for the Tate modules and the full-
faithfulness of the generic fiber functor. The primary reference for this section is Tate’s paper
[Tat67].

3.1. The completed algebraic closure of a p-adic field

Definition 3.1.1. Let K be an extension of Qp with a nonarchimedean valuation ν.

(1) We define the valuation ring of K by OK := { x ∈ K : ν(x) ≥ 0 }.
(2) We say that K is a p-adic field if it is discrete valued and complete with a perfect

residue field.

Example 3.1.2. We present some essential examples of p-adic fields.

(1) Every finite extension of Qp is a p-adic field.

(2) Given a perfect field k of characteristic p, the fraction field of the ring of Witt vectors
W (k) is a p-adic field.

Remark. The fraction field of W (Fp) is the p-adic completion of the maximal unramified
extension of Qp. Hence it is a p-adic field which is not an algebraic extension of Qp.

For the rest of this section, we let K be a p-adic field with absolute Galois group ΓK . We
also write m and k for the maximal ideal and the residue field of OK .

Definition 3.1.3. We define the completed algebraic closure of K by CK := K̂; in other
words, CK is the p-adic completion of the algebraic closure of K.

Remark. The field CK is not a p-adic field as its valuation is not discrete. In fact, it is the
first example of a characteristic 0 perfectoid field.

Lemma 3.1.4. The action of ΓK on K uniquely extends to a continuous action on CK .

Proof. This is obvious by continuity of the ΓK-action on K. �

For the rest of this section, we fix a valuation ν on CK with ν(p) = 1.

Proposition 3.1.5. The field CK is algebraically closed.

Proof. Let p(t) be an arbitrary non-constant polynomial over CK . We wish to prove
that p(t) has a root in CK . By scaling the variable if necessary, we may assume that p(t) is
a monic polynomial over OCK . In other words, we may write

p(t) = td + a1t
d−1 + · · ·+ ad

for some ai ∈ OCK . For each n, we choose a polynomial

pn(t) = td + a1,nt
d−1 + · · ·+ ad,n

with ai,n ∈ OK and ν(ai − ai,n) ≥ dn.

Let us choose α1 ∈ OK with p1(α1) = 0. We proceed by induction on n to choose αn ∈ OK
with pn(αn) = 0 and ν(αn − αn−1) ≥ n − 1. Since ai,n − ai,n−1 = (ai,n − ai) + (ai − ai,n−1)
has valuation at least d(n− 1), we find ν(pn(αn−1)) ≥ d(n− 1) by observing

pn(αn−1) = pn(αn−1)− pn−1(αn−1) =

d∑
i=1

(ai,n − ai,n−1)αd−in−1.
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Moreover, we have

pn(αn−1) =
d∏
i=1

(αn−1 − βn,i)

where βn,1, · · · , βn,d are roots of pn(t). Note that βn,i ∈ OK since OK is integrally closed. As
ν(pn(αn−1)) ≥ d(n− 1), we deduce that ν(αn−1− βn,i) ≥ n− 1 for some i. We thus complete
the induction step by taking αn := βn,i.

Since the sequence (αn) is Cauchy by construction, it converges to an element α ∈ OCK .
Moreover, for each n we find ν(p(αn)) ≥ dn by observing

p(αn) = p(αn)− pn(αn) =
d∑
i=1

(ai − ai,n)αd−in .

We thus have p(α) = 0, thereby completing the proof. �

Let us now introduce the central objects for this course.

Definition 3.1.6. A p-adic representation of ΓK is a finite dimensional Qp-vector space V
together with a continuous homomorphism ΓK ! GL(V ). We denote by RepQp(ΓK) the
category of p-adic ΓK-representations.

Example 3.1.7. Below are two essential examples of p-adic representations.

(1) By Proposition 2.1.14, every p-divisible group G over K gives rise to a p-adic ΓK-
representation Vp(G) := Tp(G)⊗Zp Qp, called the rational Tate module of G.

(2) For an arbitrary variety X over K, the étale cohomology H i
ét(XK ,Qp) is a p-adic

ΓK-representation.

Our main task in this section is to understand the p-adic ΓK-representation on the rational
Tate module of a p-divisible group over K. We will make extensive use of the following notion:

Definition 3.1.8. Given a Zp[ΓK ]-module M , we define its n-th Tate twist to be the Zp[ΓK ]-
module

M(n) :=

{
M ⊗Zp Tp(µp∞)⊗n for n ≥ 0,

HomZp[ΓK ](Tp(µp∞)⊗−n,M) for n < 0.

Example 3.1.9. By definition, we have Zp(1) = Tp(µp∞) = lim −µp
v(K). The homomorphism

χK : ΓK ! Aut(Zp(1)) ∼= Z×p which represents the ΓK-action on Zp(1) is called the p-adic
cyclotomic character of K. We will often simply write χ instead of χK to ease the notation.

Lemma 3.1.10. Let M be a Zp[ΓK ]-module. For each m,n ∈ Z, we have canonical ΓK-
equivariant isomorphisms

M(m)⊗Zp Zp(n) ∼= M(m+ n) and M(n)∨ ∼= M∨(−n).

Proof. This is straightforward to check by definition. �

Lemma 3.1.11. Let M be a Zp[ΓK ]-module, and let ρ : ΓK ! Aut(M) be the homomorphism
which represents the action of ΓK on M . For every n ∈ Z the action of ΓK on M(n) is
represented by χn · ρ.

Proof. Upon choosing a basis element e of Zp(n), we obtain an isomorphism M(n) ∼=
M ⊗Zp Zp(n)

∼
−! M given by m ⊗ e 7! m. The assertion now follows by observing that the

ΓK-action on M(n) ∼= M ⊗Zp Zp(n) is given by ρ⊗ χn. �
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We assume the following fundamental result about the Galois cohomology of the Tate
twists of CK .

Theorem 3.1.12 (Tate [Tat67], Sen [Sen80]). We have canonical isomorphisms

H i(ΓK ,CK(n)) ∼=

{
K if i = 0 or 1, n = 0

0 otherwise.

Remark. The proof of this result requires the full power of the higher ramification theory as
well as some knowledge about the local class field theory. We refer curious readers to [BC,
§14] for a complete proof.

When i = n = 0, the theorem says that the fixed field of ΓK in CK is K. This particular
statement has an elementary proof as sketched in [BC, Proposition 2.1.2].

We now introduce the first class of p-adic ΓK-representations.

Lemma 3.1.13 (Serre-Tate). For every V ∈ RepQp(ΓK), the natural CK-linear map

α̃V :
⊕
n∈Z

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

is ΓK-equivariant and injective.

Proof. For each n ∈ Z, we have a ΓK-equivariant K-linear map(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) ↪−! V ⊗Qp CK(−n)⊗K K(n) ' V ⊗Qp CK , (3.1)

which gives rise to a ΓK-equivariant CK-linear map

α̃
(n)
V :

(
V ⊗Qp CK(−n)

)ΓK ⊗K CK(n)! V ⊗Qp CK

by extension of scalars. Hence we deduce that α̃V =
⊕
n∈Z

α̃
(n)
V is ΓK-equivariant.

For each n ∈ Z, we choose a basis (vm,n) of
(
V ⊗Qp CK(−n)

)ΓK ⊗K K(n) over K. We
may regard vm,n as a vector in V ⊗Qp CK via the map (3.1). Moreover, the source of the map
α̃V is spanned by the vectors (vm,n).

Assume for contradiction that the kernel of α̃V is not trivial. Then we have a nontrivial
relation of the form

∑
cm,nvm,n = 0. Let us choose such a relation with minimal length. We

may assume that cm0,n0 = 1 for some m0 and n0. For every γ ∈ ΓK we find

0 = γ
(∑

cm,nvm,n

)
− χ(γ)n0

(∑
cm,nvm,n

)
=
∑

(γ(cm,n)χ(γ)n − χ(γ)n0cm,n) vm,n

by ΓK-equivariance of α̃V and Lemma 3.1.11. Note that the coefficient of vm0,n0 in the last
expression is 0. Hence the minimality of our relation implies that all coefficients in the last
expression must vanish, thereby yielding relations

γ(cm,n)χ(γ)n−n0 = cm,n for all γ ∈ ΓK .

Then by Lemma 3.1.11 and Theorem 3.1.12 we find cm,n = 0 for n 6= n0 and cm,n ∈ K for
n = n0. Therefore our relation

∑
cm,nvm,n = 0 becomes a nontrivial K-linear relation among

the vectors vm,n0 , thereby yielding a desired contradiction. �

Definition 3.1.14. We say that V ∈ RepQp(ΓK) is Hodge-Tate if the map α̃V in Lemma
3.1.13 is an isomorphism.

Remark. We will see in §3.4 that p-adic representations discussed in Example 3.1.7 are
Hodge-Tate in many cases.
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3.2. Formal points on p-divisible groups

For the rest of this section, we fix the base ring R = OK . We also let L be the p-adic
completion of an algebraic extension of K, and denote by mL its maximal ideal. We are
particularly interested in the case where L = CK .

We investigate the notion of formal points on p-divisible groups over OK .

Definition 3.2.1. Let G = lim−!Gv be a p-divisible group over OK . We define the group of
OL-valued formal points on G by

G(OL) := lim −
i

G(OL/miOL) = lim −
i

lim−!
v

Gv(OL/miOL).

Example 3.2.2. By definition, µp∞(OL) = lim −i µp
∞(OL/miOL) is the group of elements

x ∈ O×L such that ν(xp
v−1) can get arbitrarily large. Hence we clearly have 1+mL ⊆ µp∞(OL).

Moreover, as the residue field of OL has characteristic p, we also obtain the opposite inclusion
by observing xp

v − 1 = (x− 1)p
v

mod mL. We thus find µp∞(OL) ∼= 1 + mL.

Remark. On the other hand, the group of “ordinary” OL-valued points on µp∞ is given by

lim−!
v

µpv(OL) = lim−!
v

{
x ∈ O×L : xp

v
= 1

}
which precisely consists of p-power torsion elements inO×L . We thus see that µp∞(OL) contains
many “non-ordinary” points.

Proposition 3.2.3. Let G = lim−!Gv be a p-divisible group over OK .

(1) Writing Gv = Spec (Av) for each v, we have an identification

G(OL) ∼= HomOK−cont(lim −
v

Av,OL).

(2) G(OL) is a Zp-module with the torsion part given by

G(OL)tors
∼= lim−!

v

lim −
i

Gv(OL/miOL).

(3) If G is étale, then G(OL) is isomorphic to a torsion group G(kL) where kL denotes
the residue field of OL

Proof. Note that we have OL = lim −iOL/m
iOL) by completeness of OL. We also have

lim −v Av = lim −i,v Av/m
iAv since each Av is m-adically complete for being finite free over OK

by a general fact as stated in [Sta, Tag 031B]. We thus obtain an identification

G(OL) ∼= lim −
i

lim−!
v

HomOK (Av,OL/miOL) ∼= lim −
i

lim−!
v

HomOK (Av/m
iAv,OL/miOL)

∼= lim −
i

HomOK (lim −
v

Av/m
iAv,OL/miOL)

∼= HomOK−cont(lim −
i,v

Av/m
iAv, lim −

i

OL/miOL)

∼= HomOK−cont(lim −
v

Av,OL)

as asserted in (1).

https://stacks.math.columbia.edu/tag/031B
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Next we consider the statement (2). Observe that G(OL) is a Zp-module since each

G(OL/miOL) = lim−!
v

Gv(OL/miOL) is a Zp-module by Corollary 2.1.6. Hence G(OL)tors only

contains p-power torsions. Moreover, by Corollary 2.1.6 we have an exact sequence

0 Gv(OL/miOL) G(OL/miOL) G(OL/miOL),
[pv ]

which in turn yields an exact sequence

0 lim −
i

Gv(OL/miOL) G(OL) G(OL).
[pv ]

We find that the pv-torsion part of G(OL) is given by lim −
i

Gv(OL/miOL), thereby deducing

the assertion (2) by taking the limit over v.

If G is étale, we have identifications Gv(OL/miOL) ∼= Gv(OL/mi+1OL) by formal étaleness
of étale morphisms as stated in [Sta, Tag 04AL], thereby obtaining

G(OL) = lim −
i

lim−!
v

Gv(OL/miOL) ∼= lim −
i

lim−!
v

Gv(kL) ∼= G(kL).

We thus deduce the statement (3) by Corollary 2.1.6. �

Remark. Arguing as in the proof of Theorem 2.2.16, we can show that the formal scheme G :=
Spf(lim −Av) carries the structure of a formal group induced by the finite flatOK-group schemes

Gv. Moreover, we can write the identification in (1) as G(OL) ∼= HomOK -formal(Spf(OL),G ).

Corollary 3.2.4. Let G be a connected p-divisible group dimension d over OK . We have a
canonical isomorphism of Zp-modules

G(OL) ∼= HomOK−cont(OK [[t1, · · · , td]],OL)

where the multiplication by p on the target is induced by [p]µ(G).

Remark. From the above isomorphism we obtain an identification G(OL) ' md
OL as a set. It

is then straightforward to check that µ induces the structure of a p-adic analytic group over
L on md

OL by Lemma 2.2.5 and the completeness of L.

Proposition 3.2.5. Let G = lim−!Gv be a p-divisible group over OK . Then we have an exact
sequence

0 G◦(OL) G(OL) Gét(OL) 0.

Proof. Let us write G◦ = lim−!G◦ and Gét = lim−!Gét
v where Gét

v := Gv/G
◦
v. We also write

Gv = Spec (Av), G
◦
v = Spec (A◦v), and Gét

v = Spec (Aét
v ) where Av, A

◦
v, and Aét

v are finite free
OK-algebras. In addition, we define A := lim −Av and A ét := lim −A

ét
v .

Proposition 2.1.10 yields an exact sequence

0 G◦ G Gét 0. (3.2)

We wish to show that the induced sequence on the groups of OL-valued points is exact. The
sequence is left exact by construction as limits and colimits are left exact in the category of
abelian groups. Hence it remains to show surjectivity of the map G(OL) ! Gét(OL). By
Proposition 3.2.3, it suffices to prove surjectivity of the map

HomOK−cont(A ,OL)! HomOK−cont(A
ét,OL). (3.3)

https://stacks.math.columbia.edu/tag/04AL
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By the proof of Theorem 2.2.16 we have a continuous isomorphism

lim −A
◦
v ' OK [[t1, · · · , td]]

where d is the dimension of G. Moreover, as the sequence (3.2) canonically splits after
reduction to k by Proposition 1.4.11, we obtain a continuous isomorphism

(A ét ⊗OK k)[[t1, · · · , td]] ' A ⊗OK k.

Arguing as in the proof of Theorem 2.2.16, we can lift the above map to a continuous homo-
morphism

f : A ét[[t1, · · · , td]]! A .

We assert that f is surjective. Assume for contradiction that coker(f) 6= 0. Let M be a
maximal ideal of A such that coker(f)M 6= 0. Since f becomes an isomorphism after reduction
to k, we have coker(f) ⊗OK k = 0, or equivalently coker(f) = m coker(f). In particular, we
find coker(f)M = m coker(f)M ⊆M coker(f)M. Since coker(f)M is finitely generated (by one
element) over the local ring AM, we deduce coker(f)M = 0 by Nakayama’s lemma, thereby
obtaining the desired contradiction.

Let us now prove that f is injective. As in the previous paragraph, we find ker(f) =
m ker(f) by the fact that f becomes an isomorphism after reduction to k. Let us write

I := (t1, · · · , td), and denote by Ĩ j the image of I j under f . Then we have an exact
sequence

0 ker(f)/ ker(f) ∩I j A ét[[t1, · · · , td]]/I j A /Ĩ j 0.

Since A ét[[t1, · · · , td]]/I j is noetherian, we can argue as in the preceding paragraph with
the identity m

(
ker(f)/ ker(f) ∩I j

)
= ker(f)/ ker(f) ∩I j to find ker(f) = ker(f) ∩I j . As

∩jI j = 0, we deduce ker(f) = 0 as desired.

Now, since f is an isomorphism as seen above, it yields a surjective map A � A ét which
splits the natural map A ét ↪−! A . We thus deduce the desired surjectivity of the map (3.3),
thereby completing the proof. �

Corollary 3.2.6. For every x ∈ G(OL), we have pnx ∈ G◦(OL) for all sufficiently large n.

Proof. This is an immediate consequence of Proposition 3.2.3 and Proposition 3.2.5. �

Proposition 3.2.7. Assume that L is algebraically closed. Then G(OL) is p-divisible in the
sense that the multiplication by p on G(OL) is surjective.

Proof. By Proposition 3.2.5, it suffices to show the surjectivity of the multiplication
by p on each Gét(OL) and G◦(OL). The surjectivity on Gét(OL) is obvious by Corollary
2.1.6 and Proposition 3.2.3. Hence it remains to prove the surjectivity on G◦(OL). Let us
write A ◦ := OL[[t1, · · · , td]] where d is the dimension of G. Since the multiplication by p on
G◦(OL) ' HomOK−cont(A

◦,OL) is induced by [p]µ(G) on A ◦ as noted in Corollary 3.2.4, we
deduce the desired surjectivity by the p-divisibility of µ(G). �

Remark. If we let G ◦ denote the formal group associated to G◦, the surjectivity on G◦(OL)
also follows from the p-divisibility of G ◦ that we remarked after Theorem 2.2.16.
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3.3. The logarithm for p-divisible groups

We retain the notations in the previous subsection. Our goal in this subsection is to
construct and study the logarithm map for p-divisible groups over OK .

Definition 3.3.1. Let G be a p-divisible group over OK of dimension d. Let us write A ◦ :=
OK [[t1, · · · , td]] and denote by I the augmentation ideal of µ(G).

(1) Given an OK-module M , we define the tangent space of G with values in M by

tG(M) := HomOK -mod(I /I 2,M),

and the cotangent space of G with values in M by

t∗G(M) := I /I 2 ⊗OK M.

(2) We define the valuation filtration of G◦(OL) by setting

FilλG◦(OL) := { f ∈ G◦(OL) : ν(f(x)) ≥ λ for all x ∈ I }
for all real number λ > 0, where we identify G◦(OL) ∼= HomOK−cont(A

◦,OL) as
described in Corollary 3.2.4.

Remark. We may identify tG and t∗G respectively with the tangent space and cotangent space
of the formal group Gµ induced by µ.

Lemma 3.3.2. Let G be a p-divisible group over OK . For every f ∈ FilλG◦(OL), we have
pf ∈ FilκG◦(OL) where κ = min(λ+ 1, 2λ).

Proof. Let I denote the augmentation ideal of µ(G). Lemma 2.2.14 yields [p]µ(G)(x) =

px+ y for some y ∈ I 2. We thus find

(pf)(x) = f([p]µ(G)(x)) = f(px+ y) = pf(x) + f(y),

which implies ν((pf)(x)) ≥ min(λ+ 1, 2λ) as desired. �

Lemma 3.3.3. Let G be a p-divisible group over OK , and denote by I the augmentation

ideal of µ(G). Let us choose arbitrary elements f ∈ G(OL) and x ∈ I . Then lim
n!∞

(pnf)(x)

pn

exists in L, and equals zero if x ∈ I 2.

Proof. By Lemma 2.2.14 we may write [p]µ(G)(x) = px+y for some y ∈ I 2. In addition,
by Corollary 3.2.6 we have pnf ∈ G◦(OL) for all sufficiently large n. Then an easy induction
using Lemma 3.3.2 shows that there exists some constant c with pnf ∈ Filn+cG◦(OL) for all
sufficiently large n. Hence for all sufficiently large n we find

(pn+1f)(x)

pn+1
− (pnf)(x)

pn
=

(pnf)([p]µ(G)(x))

pn+1
− (pnf)(x)

pn
=

(pnf)(y)

pn+1
,

which in turn yields

ν

(
(pn+1f)(x)

pn+1
− (pnf)(x)

pn

)
≥ 2(n+ c)− (n+ 1) = n+ (2c− 1).

Therefore the sequence

(
(pnf)(x)

pn

)
converges in L for being Cauchy. Moreover, if x ∈ I 2

the sequence converges to 0 as

ν

(
(pnf)(x)

pn

)
≥ 2(n+ c)− (n+ 1) = n+ (2c− 1)

for all sufficiently large n. �
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Lemma 3.3.3 allows us to make the following definition.

Definition 3.3.4. Let G be a p-divisible group over OK , and let I denote the augmentation
ideal of µ(G). We define the logarithm of G to be the map

logG : G(OL)! tG(L)

such that for every f ∈ G(OL) and x ∈ I /I 2 we have

logG(f)(x) = lim
n!∞

(pnf)(x̃)

pn

where x̃ is any lift of x to I .

Remark. For curious readers, we describe an alternative construction of logG using the theory
of p-adic analytic groups. As remarked after Corollary 3.2.4, G◦(OL) carries the structure of
a p-adic analytic group over L. Moreover, we can identify its Lie algebra with tG(L). Hence
we have a map logG◦ : G◦(OL) ! tG(L) induced by the p-adic logarithm on the ambient

analytic group. We then obtain logG : G(OL)! tG(L) by setting logG(f) :=
l̃ogG◦(p

nf)

pn
for

any f ∈ G(OL) where n is chosen such that pnf belongs to G◦(OL).

Example 3.3.5. Let us provide an explicit description of logµp∞ . As seen in Example 2.2.12,

we have µĜm [p∞] ∼= µp∞ . Corollary 3.2.4 then yields an identification

µp∞(OL) ∼= HomOK−cont(OL[[t]],OL) ∼= mL
∼= 1 + mL

where the last two isomorphisms are given by f 7! f(t) and x 7! 1 + x. Note that this
identification agrees with the identification obtained in Example 3.2.2. In addition, writing
I := (t) for the augmentation ideal of µĜm we find

tµp∞ (L) = HomOK -mod(I /I 2, L) ∼= L.

We thus have a commutative diagram

µp∞(OL) tµp∞ (L)

1 + mL L

logµp∞

∼

f 7!1+f(t) ∼ g 7!g(t) (3.4)

Let us identify logµp∞ with the bottom arrow. We also take an arbitrary element 1+x ∈ 1+mL.

As each f ∈ µp∞(OL) satisfies

(pnf)(t) = f
(

[pn]Ĝm(t)
)

= f
(
(1 + t)p

n − 1
)

= (1 + f(t))p
n − 1,

the diagram 3.4 yields an expression

logµp∞ (1 + x) = lim
n!∞

(1 + x)p
n − 1

pn
= lim

n!∞

pn∑
i=1

1

pn

(
pn

i

)
xi. (3.5)

In addition, for each i and n we have

1

pn

(
pn

i

)
− (−1)i−1

i
=

(pn − 1) · · · (pn − i+ 1)− (−1)i−1(i− 1)!

i!
.

Since the numerator is divisible by pn, we obtain an estimate

ν

(
1

pn

(
pn

i

)
xi − (−1)i−1xi

i

)
≥ n+ iν(x)− ν(i!) ≥ n+ iν(x)− i

p− 1
.



3. HODGE-TATE DECOMPOSITION 59

Hence we may write the expression (3.5) as

logµp∞ (1 + x) =

∞∑
i=1

(−1)i−1

i
xi,

which coincides with the p-adic logarithm.

Let us collect some basic properties of the logarithm for p-divisible groups.

Proposition 3.3.6. Let G be a p-divisible group over OK . Denote by I the augmentation
ideal of µ(G).

(1) logG is a group homomorphism.

(2) logG is a local isomorphism in the sense that for each real number λ ≥ 1 it induces
an isomorphism

FilλG◦(OL)
∼
−!

{
τ ∈ tG(L) : ν(τ(x)) ≥ λ for all x ∈ I /I 2

}
.

(3) The kernel of logG is the torsion subgroup G(OL)tors of G(OL).

(4) logG induces an isomorphism G(OL)⊗Zp Qp ' tG(L).

Proof. Let us write A ◦ := OK [[t1, · · · , td]] where d is the dimension of G. Take arbitrary
elements f, g ∈ G(OL) and x ∈ I . Arguing as in Theorem 1.3.10, we find

µ(G)(x) ∈ 1⊗ x+ x⊗ 1 + I ⊗̂A ◦I .

Hence for all sufficiently large n we have

(pn(f + g))(x) = (pnf + png)(x) = (pnf ⊗ png) ◦ µ(x) = (pnf)(x) + (png)(x) + y

for some y ∈ (pnf)(I ) · (png)(I ). Then a similar estimate as in Lemma 3.3.3 shows

lim
n!∞

(pn(f + g))(x)

pn
= lim

n!∞

(pnf)(x)

pn
+ lim
n!∞

(png)(x)

pn
,

thereby implying that logG is a homomorphism.

Let us now fix an arbitrary real number λ ≥ 1 and write

Filλ tG(L) :=
{
τ ∈ tG(L) : ν(τ(x)) ≥ λ for all x ∈ I /I 2

}
.

If f ∈ FilλG◦(OL), Lemma 3.3.2 yields an estimate ν

(
(pnf)(x)

pn

)
≥ λ for all x ∈ I and

n > 0, thereby implying logG(f) ∈ Filλ tG(L). It is then straightforward to verify that logG
on FilλG◦(OL) admits an inverse Filλ tG(L)! FilλG◦(OL) which sends each τ ∈ Filλ tG(L)

to the unique f ∈ FilλG◦(OL) with f(ti) = τ(ti). Therefore we deduce the statement (2).

Next we show ker(logG) = G(OL)tors as asserted in (3). We clearly have G(OL)tors ⊆
ker(logG) since tG(L) is torsion free for being a vector space over L. Hence we only need to
establish the reverse inclusion ker(logG) ⊆ G(OL). Let f be an element in ker(logG). By (1)
we have pnf ∈ ker(logG) for all n. Moreover, Corollary 3.2.6 and Lemma 3.3.2 together yield
pnf ∈ Fil1G◦(OL) for all sufficiently large n. We then find pnf = 0 for all sufficiently large n
by (2), thereby deducing that f is a torsion element as desired.

Now (3) readily implies the injectivity of the map G(OL) ⊗Zp Qp ! tG(L) induced by
logG. We also deduce the surjectivity of the map from (2) by observing that every element
τ ∈ tG(L) satisfies pnτ ∈ Fil1 tG(L) for all sufficiently large n. �
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3.4. Hodge-Tate decomposition for the Tate module

In this subsection, we derive the first main result for this chapter by exploiting our accu-
mulated knowledge of finite flat group schemes and p-divisible groups.

Let us first present some easy but useful lemmas.

Lemma 3.4.1. Let G = lim−!Gv be a p-divisible group over OK . For each v we have canonical
isomorphisms

Gv(K) ∼= Gv(CK) ∼= Gv(OCK ).

Proof. Since CK is algebraically closed as noted in Proposition 3.1.5, the first isomor-
phism follows from the fact that the generic fiber of Gv is étale by Corollary 1.3.11. The
second isomorphism is a direct consequence of the valuative criterion. �

Lemma 3.4.2. For every p-divisible group G over OK we have

G(OCK )ΓK = G(OK) and tG(CK)ΓK = tG(K).

Proof. By Theorem 3.1.12 we have CΓK
K = K and OΓK

CK = OK . Hence the desired
identifications immediately follow from Proposition 3.2.3 and Definition 3.3.1. �

Lemma 3.4.3. Given a p-divisible group G over OK we have

∞⋂
n=1

pnG◦(OK) = 0.

Proof. As the valuation on K is discrete, there exists a minimum positive valuation δ;
indeed, we have δ = ν(π) where π is a uniformizer of K. Then an easy induction using Lemma

3.3.2 yields pnG◦(OK) ⊆ Filnδ G◦(OK) for all n ≥ 1. We thus deduce the desired assertion

by observing
∞⋂
n=1

Filnδ G◦(OK) = 0. �

The main technical ingredient for this subsection is the interplay between the Tate modules
and Cartier duality.

Definition 3.4.4. Let G = lim−!Gv be a p-divisible group over OK . We define the Tate module
of G by

Tp(G) := Tp(G×OK K) = lim −Gv(K),

and the Tate comodule of G by

Φp(G) := lim−!Gv(K).

Remark. The Tate comodule Φp(G) is nothing other than G(K), where G is regarded as a
fpqc sheaf.

Example 3.4.5. We have Tp(µp∞) = Zp(1) as noted in Example 3.1.9. In addition, Φ(µp∞) =

lim−!µpv(K) = µp∞(K) is the group of p-power roots of unity in K.

Proposition 3.4.6. Given a p-divisible group G over OK , Cartier duality induces natural
ΓK-equivariant isomorphisms

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1)) and Φp(G) ∼= HomZp

(
Tp(G

∨), µp∞(K)
)
.
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Proof. Note that every finite flat group scheme over K is étale by Corollary 1.3.11. For
each v we have a natural identification

Gv(K) ∼= (G∨v )∨(K) = HomK-grp

(
(G∨v )K , (µpv)K

) ∼= Hom(G∨v (K), µpv(K)) (3.6)

by Theorem 1.2.3, Lemma 1.2.2, and Proposition 1.3.1. We then obtain a ΓK-equivariant
isomorphism

Tp(G) = lim −Gv(K) ∼= lim −Hom(G∨v (K), µpv(K))

= HomZp(lim −G
∨
v (K), lim −µp

v(K))

= HomZp(Tp(G
∨),Zp(1)).

In addition, by writing (3.6) asGv(K) ∼= Hom(G∨v (K), µp∞(K)) we find another ΓK-equivariant
isomorphism

Φp(G) = lim−!Gv(K) ∼= lim−!Hom(G∨v (K), µp∞(K))

∼= HomZp(lim −G
∨
v (K), µp∞(K))

= HomZp(Tp(G
∨), µp∞(K)),

thereby completing the proof. �

Proposition 3.4.7. Let G be a p-divisible group over OK . We have an exact sequence

0 Φp(G) G(OCK ) CK 0.
logG

Proof. Since G(OCK ) is p-divisible by Proposition 3.1.5 and Proposition 3.2.7, we obtain
the surjectivity of logG by Proposition 3.3.6. We then use Proposition 3.3.6, Proposition 3.2.3
and Lemma 3.4.1 to find

ker(logG) = G(OCK )tors
∼= lim−!

v

lim −
i

Gv(OCK/m
iOCK ) = lim−!

v

Gv(OCK ) ∼= lim−!
v

Gv(K) = Φp(G),

thereby completing the proof. �

Example 3.4.8. For G = µp∞ Proposition 3.4.7 yields

0 µp∞(K) 1 + mCK CK 0.
logµp∞

by Example 3.3.5 and Example 3.4.5.

Proposition 3.4.9. Every p-divisible group G over OK gives rise to a commutative diagram
of exact sequences

0 Φp(G) G(OCK ) tG(CK) 0

0 HomZp
(
Tp(G

∨), µp∞(K)
)

HomZp (Tp(G
∨), 1 + mCK ) HomZp (Tp(G

∨),CK) 0

∼

logG

α dα

where α and dα are ΓK-equivariant and injective.

Proof. The top row is as described in Proposition 3.4.7. The bottom row is induced by
the short exact sequence in Example 3.4.8, and is exact since Tp(G

∨) is free over Zp. The left
vertical arrow is the natural ΓK-equivariant isomorphism given by Proposition 3.4.6.
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Let us now construct the maps α and dα. As usual, we write G = lim−!Gv where Gv is a
finite flat OK-group scheme. Lemma 3.4.1 and Lemma 1.2.2 together yield

Tp(G
∨) = lim −G

∨
v (K) ∼= lim −G

∨
v (OCK )

= lim −HomOCK -grp

(
(Gv)OCK

, (µpv)OCK

)
= Homp-div grp (G×OK OCK , (µp∞)OK ) . (3.7)

We define the map α : G(OCK )! HomZp(Tp(G
∨), 1 + mCK ) by setting

α(g)(u) := uOCK
(g) for each g ∈ G(OCK ) and u ∈ Tp(G∨),

where uOCK
: G(OCK ) ! µp∞(OCK ) ∼= 1 + mCK is the map induced by u under the identifi-

cation (3.7). We also define the map dα : tG(CK)! HomZp(Tp(G
∨),CK) by setting

dα(z)(u) := duCK (z) for each z ∈ tG(CK) and u ∈ Tp(G∨),

where duCK : tG(CK) ! tµp∞ (CK) ∼= CK is the map induced by u under the identification
(3.7).

The maps α and dα are evidently Zp-linear and ΓK-equivariant by construction. The
commutativity of the left square follows by observing that the left vertical arrow can be also
defined as the restriction of α on G(OCK ) ∼= Φp(G). The commutativity of the right square
amounts to the commutativity of the following diagram

G(OCK ) tG(CK)

µp∞(OCK ) = 1 + mCK tµp∞ = CK

logG

logµp∞

which is straightforward to verify by definition; indeed, the logarithm map yields a natural
transformation between the functor of OCK -valued formal points and the functor of tangent
space with values in K.

It remains to prove that α and dα are injective. By snake lemma we have Zp-linear
isomorphisms

ker(α) ' ker(dα) and coker(α) ' coker(dα). (3.8)

Hence it suffices to show that dα is injective.

As both tG(CK) and HomZp (Tp(G
∨),CK) are Qp-vector spaces, the Zp-linear map dα is

indeed Qp-linear. Therefore both ker(dα) and coker(dα) are Qp-vector spaces. The isomor-
phisms (3.8) then tells us that both ker(α) and coker(α) are Qp-vector spaces as well.

We assert that α is injective on G(OK). Suppose for contradiction that ker(α) contains
a nonzero element g ∈ G(OK). As ker(α) is torsion free for being a Qp-vector space, we may
assume g ∈ G◦(OK) by Corollary 3.2.6. Let us define the map

α◦ : G◦(OCK )! HomZp(Tp((G
◦)∨), 1 + mCK )

in the same way we define the map α. Since the natural map Tp(G
∨)! Tp((G

◦)∨) is surjective,
we obtain a commutative diagram

G◦(OCK ) G(OCK )

HomZp(Tp((G
◦)∨), 1 + mCK ) HomZp(Tp(G

∨), 1 + mCK )

α◦ α



3. HODGE-TATE DECOMPOSITION 63

where both horizontal arrows are injective. In particular, we have g ∈ ker(α◦) ∩ G◦(OK).
Moreover, Lemma 3.4.2 yields ker(α◦) ∩ G◦(OK) = ker(α◦)ΓK , which is a Qp-vector space
since ker(α◦) is a Qp-vector space by the same argument as in the preceding paragraph.
Therefore for every n ∈ Z there exists an element gn ∈ ker(α◦) ∩ G◦(OK) with g = pngn.
However, this means g = 0 by Lemma 3.4.3, yielding the desired contradiction.

Next we show that dα is injective on tG(K). Since logG(G(OK)) ⊗Zp Qp = tG(K) by
Proposition 3.3.6, it is enough to show the injectivity on logG(G(OK)). Choose an arbitrary
element h ∈ G(OK) such that logG(h) ∈ ker(dα). We wish to show that logG(h) = 0. As
the isomorphism ker(α) ' ker(dα) in (3.8) is induced by logG, we can find h′ ∈ ker(α) with
logG(h) = logG(h′). Then by Proposition 3.3.6 we have h − h′ ∈ ker(logG) = G(OCK )tors,
which means that there exists some n with pn(h − h′) = 0, or equivalently pnh = pnh′. We
thus find pnh ∈ ker(α) ∩ G(OK), which implies pnh = 0 by the injectivity of α on G(OK).
Hence we have h ∈ G(OCK )tors, thereby deducing logG(h) = 0 by Proposition 3.3.6.

As tG(K) = tG(CK)ΓK by Lemma 3.4.2, we can factor dα as

dα : tG(CK) ∼= tG(K)⊗K CK −! HomZp(Tp(G
∨),CK)ΓK ⊗K CK ! HomZp(Tp(G

∨),CK).

The first arrow is injective by our discussion in the preceding paragraph. The second arrow
is injective by Lemma 3.1.13 since we have a canonical isomorphism

HomZp(Tp(G
∨),CK) ∼= HomZp(Tp(G

∨),K)⊗K CK
due to the freeness of Tp(G

∨) over Zp. Hence we deduce the injectivity of dα as desired,
thereby completing the proof. �

Theorem 3.4.10 (Tate [Tat67]). Let G be a p-divisible group over OK . Define α and dα
as in Proposition 3.4.9. Then their restrictions to the ΓK-invariant elements yield bijective
maps

αK : G(OK)! HomZp[ΓK ](Tp(G
∨), 1 + mCK ),

dαK : tG(K)! HomZp[ΓK ](Tp(G
∨),CK).

Proof. By Proposition 3.4.9 we have a commutative diagram of exact sequences

0 G(OCK ) HomZp(Tp(G
∨), 1 + mCK ) coker(α) 0

0 tG(CK) HomZp(Tp(G
∨),CK) coker(dα) 0

α

logG

∼

dα

where the bijectivity of the right vertical arrow follows from snake lemma as noted in (3.8).
Taking ΓK-invariants of the above diagram yields

0 G(OK) HomZp[ΓK ](Tp(G
∨), 1 + mCK ) coker(α)ΓK

0 tG(K) HomZp[ΓK ](Tp(G
∨),CK) coker(dα)ΓK

αK

dαK

which implies the injectivity of αK and dαK . Moreover, by the exactness of the middle terms
we obtain a commutative diagram

coker(αK) coker(α)ΓK

coker(dαK) coker(dα)ΓK



64 II. FOUNDATIONS OF p-ADIC HODGE THEORY

where the injectivity of the left vertical arrow follows from the injectivity of the other three
arrows. Hence we only need to prove coker(dαK) = 0, or equivalently the surjectivity of dαK .

Let h and d be the height and dimension of G, and let d∨ be the dimension of G∨. Note
that the CK-vector spaces

V := HomZp(Tp(G),CK) and W := HomZp(Tp(G
∨),CK)

are both h-dimensional. The injectivity of dαK yields

dimK(WΓK ) ≥ dimK(tG(K)) = d (3.9)

where equality holds if and only if dαK is surjective. By switching the roles of G and G∨ we
also find dimK(V ΓK ) ≥ d∨, thereby obtaining

dimK(V ΓK ) + dimK(WΓK ) ≥ d+ d∨ = h (3.10)

by Theorem 2.2.19.

By Proposition 3.4.6, we have a ΓK-equivariant perfect pairing of Zp-modules

Tp(G)× Tp(G∨)! Zp(1).

The scalar extension to CK of the dual pairing yields a ΓK-equivariant CK-linear pairing

V ×W ! CK(−1), (3.11)

which is perfect since both Tp(G) and Tp(G
∨) are free over Zp. The image of V ΓK ×WΓK

should lie in CK(−1)ΓK , which is zero by Theorem 3.1.12. This means that V ΓK ⊗K CK and
WΓK ⊗K CK are orthogonal under the perfect pairing (3.11), which further implies

dimK(V ΓK ) + dimK(WΓK ) ≤ dimCK (V ) = h.

We thus have equality in (3.10), which in turn implies equality in (3.9) and thereby yielding
the desired surjectivity of dαK . �

Corollary 3.4.11. For every p-divisible group G of dimension d over OK , we have an identity

d = dimK(HomZp[ΓK ](Tp(G
∨),CK)) = dimK(Tp(G)⊗Zp CK(−1))ΓK .

Proof. The first equality immediately follows from Theorem 3.4.10. The second equality
follows by an identification

Tp(G)⊗Zp CK(−1) ∼= HomZp(Tp(G
∨),Zp(1))⊗Zp CK(−1) ∼= HomZp(Tp(G

∨),CK)

where the isomorphisms are given by Proposition 3.4.6 and the freeness of Tp(G
∨) over Zp. �

We are finally ready to prove the first main result for this chapter.

Theorem 3.4.12 (Tate [Tat67]). Let G be a p-divisible group over OK . There is a canonical
isomorphism of CK [ΓK ]-modules

Hom(Tp(G),CK) ∼= tG∨(CK)⊕ t∗G(CK)(−1).

Proof. Theorem 3.4.10 yields natural isomorphisms

tG(CK) ∼= HomZp(Tp(G
∨),CK)ΓK ⊗K CK ,

tG∨(CK) ∼= HomZp(Tp(G),CK)ΓK ⊗K CK .

Moreover, the proof of Theorem 3.4.10 shows that tG(CK) and tG∨(CK) are orthogonal under
the perfect pairing

HomZp(Tp(G),CK)×HomZp(Tp(G
∨),CK)! CK(−1)
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as constructed in (3.11), with equality

dimCK (tG(CK)) + dimCK (tG∨(CK)) = dimCK (HomZp(Tp(G),CK)).

This means that tG(CK) and tG∨(CK) are orthogonal complements with respect to the above
pairing, thereby yielding an exact sequence

0 tG∨(CK) HomZp(Tp(G),CK) t∗G(CK)(−1) 0 (3.12)

where for the last term we use the identification HomCK (tG(CK),CK(−1)) ∼= t∗G(CK)(−1)
that follows by observing that t∗G(CK) is the CK-dual tG(CK). Writing d := dimCK (tG(CK))
and d∨ := dimCK (tG∨(CK)) we find

Ext1
CK [ΓK ](t

∗
G(CK)(−1), tG∨(CK)) ' Ext1

CK [ΓK ](CK(−1)⊕d
∨
,C⊕dK )

' H1(ΓK ,CK(1))⊕dd
∨

= 0

by Theorem 3.1.12, thereby deducing that the exact sequence (3.12) splits. Moreover, such a
splitting is unique since we have

HomCK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ' HomCK [ΓK ](CK(−1)⊕d

∨
,C⊕dK )

' H0(ΓK ,CK(1))⊕dd
∨

= 0

by Theorem 3.1.12. Hence we obtain the desired assertion. �

Definition 3.4.13. Given a p-divisible group G over OK , we refer to the isomorphism in
Theorem 3.4.12 as the Hodge-Tate decomposition for G.

Corollary 3.4.14. For every p-divisible group G over OK , the rational Tate-module

Vp(G) := Vp(G×OK K) = Tp(G)⊗Zp Qp

is a Hodge-Tate p-adic representation of ΓK .

Proof. As the CK-duals of tG∨(CK) and t∗G(CK) are respectively given by t∗G∨(CK) and
tG(CK), Theorem 3.4.12 yields a decomposition

Vp(G)⊗Qp CK ∼= t∗G∨(CK)⊕ tG(CK)(1).

Then for each n we find

(
Vp(G)⊗Qp CK(−n)

)ΓK ∼=


(t∗G∨(CK) if n = 0,

tG(CK) if n = 1,

0 otherwise,

by Theorem 3.1.12. The assertion is now obvious by Definition 3.1.6. �

Let us conclude this subsection with an geometric application of Theorem 3.4.12.

Proposition 3.4.15. Let A be an abelian variety over K with good reduction. Then we have
a canonical ΓK-equivariant isomorphism

Hn
ét(AK ,Qp)⊗Qp CK ∼=

⊕
i+j=n

H i(A,Ωj
A/K)⊗K CK(−j).

Proof. Let A∨ denote the dual abelian variety of A. Since A has good reduction, there
exists an abelian scheme A over OK with AK ∼= A. Then we have Tp(A[p∞]) = Tp(A[p∞])
by definition, and A∨[p∞] ∼= A[p∞]∨ as noted in Example 2.1.9. In addition, we have the
following standard facts:
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(1) There is a canonical isomorphism

H1
ét(AK ,Qp) ∼= HomZp(Tp(A[p∞]),Zp)⊗Zp Qp.

(2) The formal completion of A along the unit section gives rise to the formal group law
µ(A[p∞]).

(3) There are canonical isomorphisms

H0(A,Ω1
A/K) ∼= t∗e(A) and H1(A,OA) ∼= te(A

∨)

where t∗e(A) and te(A) respectively denote the cotangent space of A and tangent
space of A∨ (at the unit section).

(4) We have identifications

Hn
ét(AK ,Qp) ∼=

∧n
H1

ét(AK ,Qp),

H i(A,Ωj
A/K) ∼=

∧i
H1(A,OA)⊗

∧j
H0(A,Ω1

A/K).

The statements (2) and (3) together yield identifications

H0(A,Ω1
A/K) ∼= t∗A[p∞](K) and H1(A,OA) ∼= tA∨[p∞](K).

Hence Theorem 3.4.12 yields a canonical ΓK-equivariant isomorphism

H1
ét(AK ,Qp)⊗Qp CK ∼= (H1(A,OA)⊗K CK)⊕ (H0(A,Ω1

A/K)⊗K CK(−1)).

We then obtain the desired isomorphism by (4). �

Remark. Proposition 3.4.15 is a special case of the general Hodge-Tate decomposition the-
orem that we introduced in Chapter I, Theorem 1.2.1. The original proof by Faltings in
[Fal88] relies on the language of almost mathematics. Recently, inspired by the work of
Faltings, Scholze [Sch13] extended the Hodge-Tate decomposition theorem to rigid analytic
varieties using his theory of perfectoid spaces. A good exposition of Scholze’s work can be
found in Bhatt’s notes [Bha].

Corollary 3.4.16. For every abelian variety A over K with good reduction, the étale coho-
mology Hn

ét(AK ,Qp) is a Hodge-Tate p-adic representation of ΓK .

Proof. For each j ∈ Z we find(
Hn

ét(AK ,Qp)⊗Qp CK(j)
)ΓK ∼= {Hn−j(A,Ωj

A/K) if 0 ≤ j ≤ n,
0 otherwise

by Proposition 3.4.15 and Theorem 3.1.12. Hence we deduce the desired assertion by Defini-
tion 3.1.6. �

Remark. Corollary 3.4.16 readily extends to an arbitrary proper smooth variety X over K,
as for each j ∈ Z the general Hodge-Tate decomposition theorem and Theorem 3.1.12 together
yield an identification(

Hn
ét(XK ,Qp)⊗Qp CK(j)

)ΓK ∼= {Hn−j(X,Ωj
X/K) if 0 ≤ j ≤ n,

0 otherwise.

Moreover, the above identification shows that Hn
ét(XK ,Qp) recovers the Hodge number (and

Hodge cohomology) of X. This is a p-adic analogue of the fact from the classical Hodge theory
that the Hodge numbers are topological invariants of a smooth proper variety over C.
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3.5. Generic fibers of p-divisible groups

The main focus of this subsection is to prove the second main result for this chapter,
which says that the generic fiber functor on the category of p-divisible groups over OK is fully
faithful.

We assume the following technical result without proof.

Proposition 3.5.1. Let G = lim−!Gv be a p-divisible group of height h and dimension d over

OK . Let us Gv = Spec (Av) where Av is a finite free OK-algebra. Then the discriminant ideal

of Av over OK is generated by pdvp
hv

.

Remark. For curious readers, we briefly sketch the proof of Proposition 3.5.1. Let disc(Av)
denote the discriminant ideal of Av over OK . By Proposition 2.1.5 we have a short exact
sequence

0 G1 Gv+1 Gv 0.

From this we can deduce a relation disc(Av+1) = disc(Av)
pv disc(A1)p

hv
, thereby reducing our

proof to the case v = 1. Moreover, if we write G◦1 = Spec (A◦1) we can find disc(A◦1) = disc(A1)
from the connected-étale sequence of G1. Hence it suffices to consider the case where G
is connected. Let us write A := OK [[t1, · · · , td]] and I = (t1, · · · , td). Then we have
A1 ' OK ⊗A ,[p]µ(G)

A as shown in the proof of Proposition 2.2.10. Therefore we can compute

disc(A1) by the discriminant ideal of A over [p]µ(G)(A ). However, computing the discriminant
ideal of A over [p]µ(G)(A ) turns out to be extremely technical; the best reference that we can
provide here is Haines’ notes [Hai, §2.3]

Our main strategy is to work on the level of Tate modules. The key ingredient is the fact
that, for p-divisible groups over OK , the maps on the generic fibers are completely determined
by the maps on the Tate modules by Proposition 2.1.14. Here we present two consequences
of this fact as preparation for the proof of the main result.

Lemma 3.5.2. Let f : G ! H be a homomorphism of p-divisible groups over OK . If the
restriction of f on the generic fibers is an isomorphism, then f is an isomorphism.

Proof. Let us write G = lim−!Gv and H = lim−!Hv where Gv = Spec (Av) and Hv =

Spec (Bv) are finite flat group schemes over OK . Let αv : Bv ! Av be the map of OK-algebras
induced by f . We wish to show that αv is an isomorphism. Since αv ⊗ 1 : Bv ⊗OK K !
Av ⊗OK K is an isomorphism, αv must be injective by the freeness of Bv over OK . Hence it
suffices to show that Av and Bv have the same discriminant ideal over OK .

As the generic fibers G ×OK K and H ×OK K are isomorphic, we have Tp(G) ' Tp(H).
In particular, by Corollary 3.4.11 we find that G and H have the same height and dimension.
The desired assertion now follows from Proposition 3.5.1. �

Remark. As the proof of Lemma 3.5.2 shows, Corollary 3.4.11 and Proposition 3.5.1 are the
main technical inputs for our main result in this subsection. They reflect Tate’s key insight
that the dimension of a p-divisible group should be encoded in the Tate module. Theorem
3.4.12 was indeed discovered as a byproduct in an attempt to verify his insight.

Proposition 3.5.3. Let G be a p-divisible group over OK , and let M a Zp-direct summand
of Tp(G) which is stable under the action of ΓK . There exists a p-divisible group H over OK
with a homomorphism ι : H ! G which induces an isomorphism Tp(H) 'M .

Proof. As usual, let us write G = lim−!Gv where Gv is a finite flat group scheme over

OK . By Proposition 2.1.14, the submodule M of Tp(G) gives rise to a p-divisible group
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H̃ = lim−! H̃v over K with a homomorphism H̃ ! G×OK K which induces a closed embedding

ι̃v : H̃v ↪! Gv ×OK K at each finite level. Let h be the height of H̃, and let Hv denote

the scheme theoretic closure of H̃v in Gv. We then quickly verify that Hv is a finite flat

group scheme of order pvh. Moreover, the closed embedding H̃v ↪! H̃v+1 extends to a closed
embedding Hv ↪! Hv+1.

Let us now consider the quotient Hv+1/Hv. Observe that [p] factors through the unit

section on the generic fiber H̃v+1/H̃v ' H̃1 = H̃[p]. Passing to the scheme theoretic closure,
we find that [p] also factors through the unit section on Hv+1/Hv. Therefore [p]Hv+2

induces
a homomorphism

δv : Hv+2/Hv+1 ! Hv+1/Hv

which yields an isomorphism on the generic fibers. Let us write Hv+1/Hv = Spec (Bv) where
Bv is a finite free OK-algebra. The map Bv ! Bv+1 induced by δv is injective, as it becomes
isomorphism upon tensoring with K. Hence the Bv’s form an increasing sequence of OK-
orders in the K-algebra B1 ⊗OK K. In addition, since B1 ⊗OK K is finite étale by Corollary
1.3.11, we adapt the argument of [AM94, Proposition 5.17] to deduce that the integral closure
of OK in B1 ⊗OK K is noetherian. Therefore there exists some v0 such that Bv ' Bv+1 for
all v ≥ v0, or equivalently δv is an isomorphism for all v ≥ v0.

Let us set Hv := Hv0+v/Hv0
. We have a closed embedding Hv ↪−! Hv+1 induced by the

closed embedding Hv0+v ↪−! Hv0+v+1. We assert that H := lim−!Hv is a p-divisible group

over OK . By construction, Hv is a finite flat OK-group scheme of order pvh. Moreover, we
have a commutative diagram

Hv+1 = Hv0+v+1/Hv0
Hv0+v+1/Hv0

= Hv+1

Hv0+v+1/Hv0+v Hv0+1/Hv0
= H1

[pv ]

∼

where the bottom arrow is given by δv0◦· · ·◦δv0+v. We then find that the kernel of [pv] on Hv+1

is equal to the kernel of the left vertical arrow, thereby deducing Hv+1[pv] = Hv0+v/Hv0
= Hv.

We now define a homomorphism ιv : Hv ! Gv by the composition

Hv = Hv0+v/Hv0
Hv Gv.

[pv0 ]

It is straightforward to check that the maps ιv give rise to a homomorphism ι : H ! G.
Moreover, on the generic fibers it induces a map

H̃v0+v/H̃v0 H̃v Gv ×OK K
[pv0 ]

where the first arrow is an isomorphism by the p-divisibility of H̃. Hence we find that ι

induces an isomorphism Tp(H) ' Tp(H̃) 'M , thereby completing the proof. �

Let us now prove the second main result of this chapter.

Theorem 3.5.4 (Tate [Tat67]). For arbitrary p-divisible groups G and H over OK , the
natural map

Hom(G,H)! Hom(G×OK K,H ×OK K)

is bijective.
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Proof. Let us write G = lim−!Gv and H = lim−!Hv where Gv = Spec (Av) and Hv =

Spec (Bv) are finite flat group schemes over OK . Consider an arbitrary homomorphism f̃ :

G ×OK K ! H ×OK K. We wish to show that f̃ uniquely extends to a homomorphism
f : G! H.

Let α̃v : Bv ⊗OK K ! Av ⊗OK K be the map of K-algebras induced by f̃ . As Bv is
free over OK , there exists at most one OK-algebra homomorphism αv : Bv ! Av such that
αv ⊗ 1 = α̃v. Hence we deduce that there exists at most one homomorphism f : G! H that

extends f̃ .

It remains to construct an extension f : G! H of f̃ . Recall that Tp(G×OK K) = Tp(G)
and Tp(H ×OK K) = Tp(H) by definition. Let τ : Tp(G) ! Tp(H) be the map on the Tate

modules induced by f̃ . Denote by M the graph of τ in Tp(G)⊕Tp(H). Clearly M is a Zp[ΓK ]-
submodule of Tp(G) ⊕ Tp(H). Moreover, the quotient (Tp(G) ⊕ Tp(H))/M is torsion-free as
there is an injective Zp-linear map

(Tp(G)⊕ Tp(H))/M ↪! Tp(H)

defined by (x, y) 7! y − τ(x). Since Zp is a principal ideal domain, we find that (Tp(G) ⊕
Tp(H))/M is free over Zp, thereby deducing that the exact sequence

0 M Tp(G)⊕ Tp(H) (Tp(G)⊕ Tp(H))/M 0

splits. This means that M is a Zp-direct summand of Tp(G)⊕Tp(H) ∼= Tp(G×OK H). Hence
Proposition 3.5.3 yields a p-divisible group G′ over OK with a homomorphism ι : G′ !
G ×OK H which induces an isomorphism Tp(G

′) ' M . Let us now consider the projection
maps π1 : G ×OK H � G and π2 : G ×OK H � H. The map π1 ◦ ι induces an isomorphism
Tp(G

′) ' Tp(G) by construction, and thus induces an isomorphism on the generic fibers by
Proposition 2.1.14. Hence Lemma 3.5.2 implies that π1 ◦ ι is an isomorphism. We then find
that f := π2 ◦ ι ◦ (π1 ◦ ι)−1 induces the map τ on the Tate modules by construction, and

thereby extends f̃ by Proposition 2.1.14. �

Remark. As a related fact, the special fiber functor on the category of p-divisible groups
over OK is faithful. In other words, for arbitrary p-divisible groups G and H over OK , the
natural map

Hom(G,H)! Hom(G×OK k,H ×OK k)

is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Theorem 3.5.4 remains true if the base ring OK is
replaced by any ring R that satisfies the following properties:

(i) R is integrally closed and noetherian,

(ii) R is an integral domain whose fraction field has characteristic 0.

In fact, it is not hard to deduce the general case from Theorem 3.5.4 by algebraic Hartog’s
Lemma.

Corollary 3.5.5. For arbitrary p-divisible groups G and H over OK , the natural map

Hom(G,H)! HomZp[ΓK ](Tp(G), Tp(H))

is bijective.

Proof. This is an immediate consequence of Proposition 2.1.14 and Theorem 3.5.4. �
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We conclude this section by stating a fundamental theorem which provides a classification
of p-divisible groups over OK when K is unramified over Qp. We write W (k) for the ring of
Witt vectors over k.

Definition 3.5.6. A Honda system over W (k) is a Dieudonné module M over k together
with a W (k)-submodule L such that ϕM induces an isomorphism L/pL 'M/ϕM (M).

Theorem 3.5.7 (Fontaine [Fon77]). If p > 2, there exists an anti-equivalence of categories

{ p-divisible groups over W (k) } ∼
−! {Honda systems over W (k) }

such that for every p-divisible group G over W (k) with the mod p reduction G := G×W (k) k,

the Dieudonné module of the associated Honda system coincides with D(G).

Remark. Let A be an abelian variety over K with good reduction. This means that there
exists an abelian scheme A over OK with AK ∼= A. As noted in the proof of Proposition
3.4.15, we have canonical identifications

Hn
ét(AK ,Qp) ∼=

∧n
H1

ét(AK ,Qp),

H1
ét(AK ,Qp) ∼= HomZp(Tp(A[p∞]),Zp)⊗Zp Qp.

Hence Corollary 3.5.5 implies that the ΓK-action on Hn
ét(AK ,Qp) is determined by A[p∞].

Let us now assume that K is an unramified extension of Qp with p > 2. Then we can
identify OK with the ring of Witt vectors over k. Therefore we deduce from Theorem 3.5.7
that A[p∞] is determined by the Dieudonné module D(Ak[p∞]) over k equipped with some
filtration. This implies that the study of the ΓK-action on Hn

ét(AK ,Qp) is equivalent to the
study of the Dieudonné module D(Ak[p∞]) over k equipped with some filtration.

Note that our discussion in the preceding paragraph recovers the toy example that we
described in §1.1 of Chapter I as a special case. Furthermore, it turns out that the canonical
isomorphism

H1
cris(Ak/OK) ∼= D(Ak[p∞])

that we remarked after Example 2.3.20 is compatible with the filtrations on both sides. Hence
we can rephrase the conclusion of the preceding paragraph as an equivalence between the study
of the ΓK-action on Hn

ét(AK ,Qp) and the study of H1
cris(Ak/OK).

The discovery of this equivalence is what motivated the “mysterious functor” conjecture
and ultimately led to the crystalline comparison theorem as stated in Conjecture 1.2.3 and
Theorem 1.2.4 of Chapter I. In fact, in light of the canonical isomorphism

Hn
cris(Ak/OK) ∼=

∧n
H1

cris(Ak/OK),

the equivalence that we discussed above can be realized as a special case of the crystalline
comparison theorem.



CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

In this section, we discuss some general formalism for p-adic period rings and period
functors, as originally developed by Fontaine in [Fon94]. Our primary reference for this
section Brinon and Conrad’s notes [BC, §5].

1.1. Basic definitions and examples

Throughout this chapter, we let K be a p-adic field with the absolute Galois group ΓK ,
the inertia group IK , and the residue field k. We also denote by χ the p-adic cyclotomic
character of K as defined in Chapter II, Example 3.1.9.

Definition 1.1.1. Let B be a Qp-algebra with an action of ΓK . We denote by C the fraction
field of B, endowed with a natural action of ΓK which extends the action on B. We say that
B is (Qp,ΓK)-regular if it satisfies the following conditions:

(i) We have an identity BΓK = CΓK .

(ii) An element b ∈ B is a unit if the set

Qp · b := { c · b : c ∈ Qp }
is stable under the action of ΓK .

Remark. For any field F and any groupG, we can similarly define the notion of (F,G)-regular
rings. Then the formalism that we develop in this section readily extends to (F,G)-regular
rings. In particular, the topologies on Qp and ΓK do not play any role in our formalism.

Example 1.1.2. Every field extension of Qp with an action of ΓK is (Qp,ΓK)-regular, as
easily seen by Definition 1.1.1.

Definition 1.1.3. Let B be a (Qp,ΓK)-regular ring. Let us write E := BΓK , and denote by
VecE the category of finite dimensional vector spaces over E.

(1) We define the functor DB : RepQp(ΓK) −! VecE by

DB(V ) := (V ⊗Qp B)ΓK for every V ∈ RepQp(ΓK).

(2) We say that V ∈ RepQp(ΓK) is B-admissible if it satisfies

dimE DB(V ) = dimQp V.

(3) We write RepBQp(ΓK) for the category of B-admissible p-adic ΓK-representations.

Remark. Let us briefly describe a cohomological interpretation of the notion ofB-admissibility.
For any topological ring R with an action of ΓK , there is a natural bijection between the
pointed set H1(ΓK ,GLd(R)) and the set of isomorphism classes of continuous semilinear
ΓK-representation over R of rank d. Hence every V ∈ RepQp(ΓK) corresponds to a class

[V ] ∈ H1(ΓK ,GLd(Qp)), which in turn gives rise to a class [V ]B ∈ H1(ΓK ,GLd(B)). It turns
out that V ∈ RepQp(ΓK) is B-admissible if and only if [V ]B is trivial.

71
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Example 1.1.4. We record some simple (but not necessarily easy) examples of admissible
representations.

(1) For every (Qp,ΓK)-regular ring B we have Qp ∈ RepBQp(ΓK) with DB(Qp) = BΓK .

(2) Every p-adic representation is Qp-admissible, as DQp is the identity functor.

(3) Essentially by Hilbert’s Theorem 90, a p-adic representation V of ΓK is K-admissible
if and only if V is potentially trivial in the sense that the action of ΓK on V factors
through a finite quotient.

(4) By a hard result of Sen, a p-adic representation V of ΓK is CK-admissible if and only
if V is potentially unramified in the sense that the action of IK on V factors through
a finite quotient.

We now describe how Hodge-Tate representations fit into the formalism that we have
developed so far.

Definition 1.1.5. Let η : ΓK −! Q×p be a character. For every Qp[ΓK ]-module M , we define
its twist by η to be the Qp[ΓK ]-module

M(η) := M ⊗Qp Qp(η)

where Qp(η) denotes the ΓK-representation on Qp given by η.

Example 1.1.6. Given a Qp[ΓK ]-module M , we have an identification M(n) ∼= M(χn) for
every n ∈ Z by Lemma 3.1.11 in Chapter II.

Lemma 1.1.7. The group χ(IK) is infinite.

Proof. By definition χ encodes the action of ΓK on µp∞(K). In particular, we have

ker(χ) = Gal(K(µp∞(K))/K). Hence it suffices to show that K(µp∞(K)) is infinitely ramified
over K.

Let en be the ramification degree of K(µpn(K)) over K, and let e be the ramification
degree of K over Qp. Then en · e is greater than or equal to the ramification degree of

Qp(µpn−1(K)) over Qp, which is equal to pn−1(p− 1). We thus find that en grows arbitrarily
large as n goes to ∞, thereby deducing the desired assertion. �

Theorem 1.1.8 (Tate [Tat67]). Let η : ΓK −! Z×p be a continuous character. Then for
i = 0, 1 we have canonical isomorphisms

H i(ΓK ,CK(η)) ∼=

{
K if η(IK) is finite,

0 otherwise.

Remark. Theorem 1.1.8 recovers the essential part of the Tate-Sen theorem as stated in
Chapter II, Theorem 3.1.12; indeed, if we take η = χn for some n ∈ Z, then Theorem 1.1.8
yields canonical isomorphisms

H0(ΓK ,CK(n)) ∼= H1(ΓK ,CK(n)) ∼=

{
K for n = 0,

0 forn 6= 0,

by Example 1.1.6 and Lemma 1.1.7. Moreover, for i = 0 Theorem 1.1.8 says that Qp(η) is
CK-admissible if and only if it is potentially unramified, as we have already mentioned in
Example 1.1.4.

Definition 1.1.9. We define the Hodge-Tate period ring by

BHT :=
⊕
n∈Z

CK(n).
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Proposition 1.1.10. The Hodge-Tate period ring BHT is (Qp,ΓK)-regular.

Proof. Let us first check the condition (i) in Definition 1.1.1. Let CHT denote the fraction

field of BHT. Since we have BΓK
HT = K by Theorem 3.1.12 in Chapter II, we need to show

CΓK = K.

By Lemma 3.1.11 in Chapter II, we have a ΓK-equivariant isomorphism

BHT ' CK [t, t−1] (1.1)

where the action of ΓK on CK [t, t−1] is defined by

γ
(∑

cnt
n
)

=
∑

γ(cn)χ(γ)ntn for every γ ∈ ΓK . (1.2)

Let us similarly define the action of ΓK on CK(t) and CK((t)), which respectively denote
the field of rational functions and the field of formal Laurent series over CK . Then the
isomorphism (1.1) induces a ΓK-equivariant injective homomorphism

CHT ' CK(t) ↪−! CK((t)).

Hence it suffices to show CK((t))ΓK = K.

Consider an arbitrary formal Laurent series p(t) =
∑
cnt

n over CK . Then by (1.2) we
have p(t) ∈ CK((t))ΓK if and only if cn = γ(cn)χ(γ)n for every n ∈ Z and every γ ∈ ΓK , or
equivalently cn ∈ CK(n)ΓK for every n ∈ Z by Lemma 3.1.11 in Chapter II. We thus obtain
the desired assertion by Theorem 3.1.12 in Chapter II.

It remains to check the condition (ii) in Definition 1.1.1. Let q(t) =
∑
dnt

n be an arbitrary
nonzero element in CK [t, t−1] such that Qp · q(t) is stable under the action of ΓK . We wish to
show that q(t) is a unit in CK [t, t−1]. Since q(t) 6= 0, we have dm 6= 0 for some m. It suffices
to show that dn = 0 if n 6= m.

Let η : ΓK −! Q×p be the character that encodes the action of ΓK on Qp · q(t). Then
η is continuous since the action of ΓK on each CK(n) is continuous. In particular, we may
consider η as a character with values in Z×p . Now for every n ∈ Z and every γ ∈ ΓK we have

η(γ)·dn = γ(dn)χ(γ)n, or equivalently dn = (η−1χn)(γ)γ(dn). This means dn ∈ CK(η−1χn)ΓK

for every n ∈ Z, which implies by Theorem 1.1.8 that (η−1χn)(IK) is finite for any n ∈ Z with
dn 6= 0.

Suppose for contradiction that we have dn 6= 0 for some n 6= m. Our discussion in the
preceding paragraph shows that both η−1χn and η−1χm have finite images on IK . Hence
χn−m = (η−1χn) · (η−1χm)−1 also has a finite image, thereby yielding a desired contradiction
by Lemma 1.1.7. �

Proposition 1.1.11. A p-adic representation V of ΓK is Hodge-Tate if and only if it is
BHT-admissible.

Proof. By definition we have

DBHT
(V ) = (V ⊗Qp BHT)ΓK =

⊕
n∈Z

(V ⊗Qp CK(n))ΓK . (1.3)

Define α̃V as in Chapter II, Lemma 3.1.13. Since α̃V is injective, it is an isomorphism if
and only if the source and the target have the same dimension over CK , which amounts to
the identity dimK DBHT

(V ) = dimQp V . The desired assertion now follows from definition of
Hodge-Tate representations and BHT-admissibility. �
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Example 1.1.12. Let V be a p-adic representation of ΓK which fits into an exact sequence

0 Qp(l) V Qp(m) 0

where l and m are distinct integers. We assert that V is Hodge-Tate. For every n ∈ Z we
obtain an exact sequence

0 CK(l + n) V ⊗Qp CK(n) CK(m+ n) 0

as CK(n) is flat over Qp, and consequently get a long exact sequence

0 CK(l + n)ΓK (V ⊗Qp CK(n))ΓK CK(m+ n)ΓK H1(ΓK ,CK(l + n)).

Then by Theorem 3.1.12 in Chapter II we find

(V ⊗Qp CK(n))ΓK ∼=

{
K for n = −l,−m,
0 for n 6= −l,−m.

Hence by (1.3) we have

dimK DBHT
(V ) =

∑
n∈Z

dimK(V ⊗Qp CK(n))ΓK = 2 = dimQp V,

thereby deducing the desired assertion.

Remark. On the other hand, a self extension of Qp may not be Hodge-Tate. For example, the

two-dimensional vector space over Qp where each γ ∈ ΓK acts as the matrix

(
1 logp(χ(γ))
0 1

)
is not Hodge-Tate. The proof of this statement requires some knowledge about the Sen theory.

Proposition 1.1.13. Let η : ΓK −! Z×p be a continuous character. Then Qp(η) is Hodge-
Tate if and only if there exists some n ∈ Z such that (ηχn)(IK) is finite.

Proof. Since Qp(η) is 1-dimensional, Lemma 3.1.13 in Chapter II implies that Qp(η) is
Hodge-Tate if and only if there exists some n ∈ Z with (Qp(η) ⊗Qp CK(n))ΓK 6= 0, which

amounts to the condition CK(ηχn)ΓK 6= 0 by Example 1.1.6. We thus obtain the desired
assertion by Theorem 1.1.8. �

Definition 1.1.14. Let V be a Hodge-Tate representation. We say that an integer n ∈ Z is
a Hodge-Tate weight of V with multiplicity m if we have

dimK(V ⊗Qp CK(n))ΓK = m > 0.

Example 1.1.15. We record the Hodge-Tate weights for some Hodge-Tate representations.

(1) For every n ∈ Z the Tate twist Qp(n) of Qp is a Hodge-Tate representation with the
Hodge-Tate weight −n.

(2) For every p-divisible group G over OK , the rational Tate module Vp(G) is a Hodge-
Tate representation with the Hodge-Tate weights 0 and −1 by the proof of Corollary
3.4.14 in Chapter II.

(3) For an abelian varietyA overK with good reduction, the étale cohomologyHn
ét(AK ,Qp)

is a Hodge-Tate representation with the Hodge-Tate weights 0, 1, · · · , n by the proof
of Corollary 3.4.16 in Chapter II.

Remark. The readers should be aware that many authors use the opposite sign convention
for Hodge-Tate weights. We will explain the reason for our choice in §2.4.
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1.2. Formal properties of admissible representations

Throughout this subsection, we fix a (Qp,ΓK)-regular ring B and write E := BΓK .

Theorem 1.2.1. For every V ∈ RepQp(ΓK) we have the following statements:

(1) The natural map

αV : DB(V )⊗E B −! V ⊗Qp B

is B-linear, ΓK-equivariant, and injective.

(2) We have an inequality

dimE DB(V ) ≤ dimQp V (1.4)

with equality if and only if αV is an isomorphism.

Proof. Let us first consider the statement (1). The natural map αV is given by

αV : DB(V )⊗E B −! (V ⊗Qp B)⊗E B ∼= V ⊗Qp (B ⊗E B) −! V ⊗Qp B,

which is B-linear and ΓK-equivariant by inspection. We need to show that αV is injective.
By Example 1.1.2 the fraction field C of B is (Qp,ΓK)-regular. We thus have a natural map

βV : DC(V )⊗E C −! V ⊗Qp C

which fits into a commutative diagram

DB(V )⊗E B V ⊗Qp B

DC(V )⊗E C V ⊗Qp C

αV

βV

where both vertical maps are injective. Therefore it suffices to prove the injectivity of βV .

Let (xi) be a basis of DC(V ) = (V ⊗Qp C)ΓK over E. We regard each xi as an element in
V ⊗Qp C. Note that (xi) spans DC(V )⊗E C over C.

Assume for contradiction that the kernel of βV is not trivial. Then we have a nontrivial
relation of the form

∑
bixi = 0 with bi ∈ C. Let us choose such a relation with minimal

length. We may assume br = 1 for some r. For every γ ∈ ΓK we find

0 = γ
(∑

bixi

)
−
∑

bixi =
∑

(γ(bi)− bi)xi.

Since the coefficient of xr vanishes, the minimality of our relation yields bi = γ(bi) for each
bi, or equivalently bi ∈ CΓK = E. Hence our relation gives a nontrivial relation for (xi) over
E, thereby yielding a desired contradiction.

We now proceed to the statement (2). Since the extension of scalars from B to C preserves
injectivity, αV induces an injective map

DB(V )⊗E C ↪! V ⊗Qp C. (1.5)

The desired inequality (1.4) now follows by observing

dimC DB(V )⊗E C = dimE DB(V ) and dimC V ⊗Qp C = dimQp V. (1.6)

Hence it remains to consider the equality condition.

If αV is an isomorphism, the map (1.5) also becomes an isomorphism, thereby yielding
equality in (1.4) by (1.6). Let us now assume that equality in (1.4) holds, and write

d := dimE DB(V ) = dimQp V.
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By (1.6) we find that the map (1.5) is an isomorphism for being an injective map between
two vector spaces of the same dimension. Let us choose a basis (ei) of DB(V ) = (V ⊗Qp B)ΓK

over E and a basis (vi) of V over Qp. Then we can represent αV by a d× d matrix MV . We
have det(MV ) 6= 0 as αV induces an isomorphism (1.5). We wish to show det(MV ) ∈ B×.
Let us consider the identity

αV (e1 ∧ · · · ∧ ed) = det(MV )(v1 ∧ · · · ∧ vd).
By construction, ΓK acts trivially on e1 ∧ · · · ∧ ed and by some Qp-valued character η on
v1 ∧ · · · ∧ vd. Since αV is ΓK-equivariant, we deduce that ΓK acts on det(MV ) by η−1. Hence
we obtain det(MV ) ∈ B× as B is (Qp,ΓK)-regular, thereby completing the proof. �

Proposition 1.2.2. The functor DB is exact and faithful on RepBQp(ΓK).

Proof. Let V andW beB-admissible representations. Suppose that f ∈ HomQp[ΓK ](V,W )
induces a zero map DB(V ) −! DB(W ). Then f induces a zero map V ⊗Qp B −!W ⊗Qp B
by Theorem 1.2.1, which means that f must be a zero map. We thus find that the functor
DB is faithful on RepBQp(ΓK).

It remains to verify that DB is exact on RepBQp(ΓK). Let us consider an arbitrary short

exact sequence of B-admissible representations

0 U V W 0.

Recall that every algebra over a field is faithfully flat; in particular, B is faithfully flat over
both Qp and E. Therefore we find that the sequence

0 U ⊗Qp B V ⊗Qp B W ⊗Qp B 0

is exact, which implies that the sequence

0 DB(U)⊗E B DB(V )⊗E B DB(W )⊗E B 0

is also exact by Theorem 1.2.1. The desired assertion now follows by the fact that B is
faithfully flat over E. �

Proposition 1.2.3. The category RepBQp(ΓK) is closed under taking subquotients.

Proof. Consider a short exact sequence of p-adic representations

0 U V W 0 (1.7)

with V ∈ RepBQp(ΓK). We wish to show that both U and W are B-admissible. Since the

functor DB is left exact by construction, we have a left exact sequence

0 DB(U) DB(V ) DB(W ). (1.8)

In addition, by Theorem 1.2.1 we have inequalities

dimE DB(U) ≤ dimQp U and dimE DB(W ) ≤ dimQpW. (1.9)

Then the exact sequences (1.7) and (1.8) together yield inequalities

dimE DB(V ) ≤ dimE DB(U) + dimE DB(W ) ≤ dimQp U + dimQpW = dimQp V,

which are in fact equalities as V is B-admissible. We thus have equalities in (1.9), thereby
deducing the desired assertion. �

Remark. However, in general the category RepBQp(ΓK) is not closed under taking extensions,

as noted after Example 1.1.12.



1. FONTAINE’S FORMALISM ON PERIOD RINGS 77

Proposition 1.2.4. Given V,W ∈ RepBQp(ΓK), we have V ⊗Qp W ∈ RepBQp(ΓΓK ) with a

natural isomorphism
DB(V )⊗E DB(W ) ∼= DB(V ⊗Qp W ).

Proof. By Theorem 1.2.1 we have natural isomorphisms

αV : DB(V )⊗E B
∼
−! V ⊗Qp B and αW : DB(W )⊗E B

∼
−!W ⊗Qp B.

Let us consider the natural map

DB(V )⊗E DB(W ) (V ⊗Qp B)⊗E (W ⊗Qp B) (V ⊗Qp W )⊗Qp B. (1.10)

The image of the first arrow is a ΓK-invariant space (V ⊗Qp B)ΓK ⊗ (W ⊗Qp B)ΓK , while the
second arrow is evidently ΓK-equivariant. Hence we obtain a natural E-linear map

DB(V )⊗E DB(W ) −!
(
(V ⊗Qp W )⊗Qp B

)ΓK ∼= DB(V ⊗Qp W ). (1.11)

Moreover, this map is injective since the map (1.10) extends to a B-linear map

(DB(V )⊗E DB(W ))⊗E B
(
(V ⊗Qp B)⊗E (W ⊗Qp B)

)
⊗E B (V ⊗Qp W )⊗Qp B

which coincides with the isomorphism αV ⊗ αW under the identifications

(DB(V )⊗E DB(W ))⊗E B ∼= (DB(V ))⊗B (DB(W )⊗E B),(
(V ⊗Qp B)⊗E (W ⊗Qp B)

)
⊗E B ∼= (V ⊗Qp B ⊗E B)⊗B (W ⊗Qp B ⊗E B),

(V ⊗Qp W )⊗Qp B
∼= (V ⊗Qp B)⊗B (W ⊗Qp B).

Therefore the map (1.11) yields an inequality

dimE DB(V ⊗Qp W ) ≥ (dimE D(V )) · (dimE DB(W )) = dimQp V ⊗Qp W

where the equality follows from the B-admissibility of V and W . We then find that this
inequality is indeed an equality by Theorem 1.2.1, thereby deducing that V ⊗Qp W is a B-
admissible representation with the natural isomorphism (1.11). �

Proposition 1.2.5. For every V ∈ RepBQp(ΓK), we have ∧n(V ) ∈ RepBQp(ΓK) and Symn V ∈
RepBQp(ΓK) with natural isomorphisms

∧n(DB(V )) ∼= DB(∧n(V )) and Symn(DB(V )) ∼= DB(Symn(V )).

Proof. Let us only consider exterior powers here, as the same argument works with sym-
metric powers. By Proposition 1.2.4 we have V ⊗n ∈ RepBQp(ΓK) with a natural isomorphism

DB(V ⊗n) ∼= DB(V )⊗n. Hence by Proposition 1.2.3 we have ∧n(V ) ∈ RepBQp(ΓK) with a

natural E-linear map

DB(V )⊗n DB(V ⊗n) DB(∧n(V ))∼

where the surjectivity of the second arrow follows from the exactness of DB as noted in
Proposition 1.2.2. It is then straightforward to check that this map factors through the
natural surjection DB(V )⊗n � ∧n(DB(V )). We thus obtain a natural surjective E-linear
map

∧n(DB(V )) DB(∧n(V )),

which turns out to be an isomorphism since we have

dimE ∧n(DB(V )) = dimE DB(∧n(V ))

by the B-admissibility of V and ∧n(V ). �
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Proposition 1.2.6. For every V ∈ RepBQp(ΓK), the dual representation V ∨ lies in RepBQp(ΓK).

Moreover, the natural map

DB(V )⊗E DB(V ∨) ∼= DB(V ⊗Qp V
∨) −! DB(Qp) ∼= E (1.12)

is a perfect pairing.

Proof. Let us first consider the case where dimQp V = 1. We fix a basis vector v for V
over Qp, and denote by v∨ the corresponding basis vector for V ∨ over Qp. Then we have a
character η : ΓK −! Q×p that satisfies

γ(v) = η(γ)v for every γ ∈ ΓK . (1.13)

Since DB(V ) = (V ⊗Qp B)ΓK is 1-dimensional over E by the B-admissibility of V , it admits
a ΓK-invariant basis vector v ⊗ b for some b ∈ B. Hence by (1.13) we find

v ⊗ b = γ(v ⊗ b) = γ(v)⊗ γ(b) = η(γ)v ⊗ γ(b) = v ⊗ η(γ)γ(b) for every γ ∈ ΓK ,

or equivalently
b = η(γ)γ(b) for every γ ∈ ΓK . (1.14)

Moreover, we have b ∈ B× as Theorem 1.2.1 yields a natural isomorphism

DB(V )⊗E B ∼= V ⊗Qp B

which sends v ⊗ b to a basis vector for V ⊗Qp B over B. We then find by (1.14) that

DB(V ∨) = (V ∨ ⊗Qp B)ΓK contains a nonzero vector v∨ ⊗ b−1. Hence the inequality

dimE DB(V ∨) ≤ dimQp V
∨ = 1

given by Theorem 1.2.1 must be an equality, which implies that V ∨ is B-admissible. We also
find that v∨⊗ b−1 is a basis vector for DB(V ∨) over E, and consequently verify that the map
(1.12) is a perfect pairing.

We now prove the B-admissibility of V ∨ in the general case. Let us write d := dimQp V .
We have a natural ΓK-equivariant isomorphism

Φ : det(V ∨)⊗Qp ∧d−1V
∼
−! V ∨

such that
Φ : ((f1 ∧ · · · ∧ fd)⊗ (v2 ∧ · · · ∧ vd)) (v1) = det(fi(vj))

for all fi ∈ V ∨ and vj ∈ V . Proposition 1.2.5 implies that both det(V ) = ∧dV and ∧d−1V are
B-admissible. Then our discussion in the preceding paragraph shows that det(V ∨) ∼= det(V )∨

is also B-admissible since dimQp det(V ) = 1. Therefore we find that V ∨ is B-admissible by
Proposition 1.2.4.

It remains to show that the map (1.12) is a perfect pairing in the general case. Since both
V and V ∨ are B-admissible, we have

d = dimE DB(V ) = dimE DB(V ∨).

Upon choosing bases for DB(V ) and DB(V ∨) over E, we can represent the map (1.12) as
a d × d matrix M . Then the map (1.12) is perfect if and only if det(M) is not zero, or
equivalently the induced pairing

det(DB(V ))⊗E det(DB(V ∨)) −! E

is perfect. We thus deduce the desired assertion from the first paragraph using the identifica-
tions

det(DB(V )) ∼= DB(det(V )) and det(DB(V ∨)) ∼= DB(det(V ∨))

given by Proposition 1.2.5. �
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2. de Rham representations

The main goal of this section is to define and study the de Rham period ring and de
Rham representations. We will use some basic theory of perfectoid fields to provide a modern
perspective of Fontaine’s original work. Our discussion will introduce many ideas that we
will further investigate in Chapter IV. The primary references for this section are Brinon and
Conrad’s notes [BC, §4 and §6] and Scholze’s paper [Sch12].

2.1. Perfectoid fields and tilting

Definition 2.1.1. Let C be a complete nonarchimedean field of residue characteristic p. We
say that C is a perfectoid field if it satisfies the following conditions:

(i) The valuation on C is nondiscrete.

(ii) The p-th power map on OC/pOC is surjective.

Remark. When we say that a field is nonarchimedean, we always assume that the field is
not trivially valued. On the other hand, when we say that a field is valued, we assume that
the field may be trivially valued.

Lemma 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. Assume
that the p-th power map is surjective on C. Then C is a perfectoid field.

Proof. Let us write ν for the valuation on C. We assert that ν is nondiscrete. Suppose
for contradiction that ν is discrete. Take an element x ∈ C with a minimum positive valuation.
Since the p-th power map is surjective on C, we have x = yp for some y ∈ C. Then we find

0 < ν(y) = ν(x)/p < ν(x),

thereby obtaining a desired contradiction.

It remains to verify that the p-th power map on OC/pOC is surjective. It suffices to show
that the p-th power map on OC is surjective. Take an arbitrary element z ∈ OC . We may
write z = wp for some w ∈ C as the p-th power map is surjective on C by the assumption.
Then we find w ∈ OC by observing

ν(w) = ν(z)/p > 0.

Hence we obtain the desired surjectivity of the p-th power map on OC . �

Example 2.1.3. Since CK is algebraically closed as noted in Chapter II, Proposition 3.1.5,
it is a perfectoid field by Lemma 2.1.2.

Proposition 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

Proof. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by
Lemma 2.1.2. �

For the rest of this subsection, we let C be a perfectoid field with the valuation ν.

Definition 2.1.5. We define the tilt of C by

C[ := lim −
x 7!xp

C

endowed with the natural multiplication.
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A priori, the tilt of C is just a multiplicative monoid. We aim to show that it has a
natural structure of a perfectoid field of characteristic p. For every c = (cn) ∈ C[ we write
c] := c0.

Lemma 2.1.6. Fix an element $ ∈ C× with 0 < ν($) ≤ ν(p). Then for arbitrary elements
x, y ∈ OC with x− y ∈ $OC we have

xp
n − ypn ∈ $n+1OC for each n = 0, 1, 2, · · · .

Proof. The inequality ν($) ≤ ν(p) implies that p is divisible by $ in OC . We also have

xp
n − ypn =

(
yp

n−1
+ (xp

n−1 − ypn−1
)
)p
− ypn for each n = 1, 2, · · · .

Since we have x− y ∈ $OC , the desired assertion follows by induction. �

Proposition 2.1.7. For every element $ ∈ C× with 0 < ν($) ≤ ν(p), the natural projection
OC � OC/$OC induces a multiplicative bijection

lim −
x 7!xp

OC ∼= lim −
x 7!xp

OC/$OC .

Proof. We wish to construct an inverse

` : lim −
x 7!xp

OC/$OC −! lim −
x7!xp

OC .

Take an arbitrary element c = (cn) ∈ lim −
x 7!xp

OC/$OC . For each n, we choose a lift cn ∈ OC of

cn. By construction we have

cp
l

n+m+l − cn+m ∈ $OC for all l,m, n ≥ 0,

and consequently find

cp
m+l

n+m+l − c
pm

n+m ∈ $m+1OC for all n,m ≥ 0

by Lemma 2.1.6. Hence for each n ≥ 0 the sequence (cp
m

n+m)m≥0 converges in OC for being
Cauchy. In addition, the limit does not depend on the choice of the cn’s by Lemma 2.1.6. Let
us now write

`n(c) := lim
m!∞

cp
m

n+m for each n ≥ 0.

We then obtain the desired inverse by setting

`(c) := (`n(c)) ∈ lim −
x 7!xp

OC ,

thereby completing the proof. �

Proposition 2.1.8. The tilt C[ of C is naturally a complete valued field of characteristic p
with the valuation ν[ given by ν[(c) = ν(c]) for every c ∈ C[. Moreover, the valuation ring of

C[ is given by

OC[ = lim −
x 7!xp

OC .

Proof. Fix an element $ ∈ C× with 0 < ν($) ≤ ν(p). The ring OC/$OC is of
characteristic p since$ divides p inOC by construction. Hence the ring structure onOC/$OC
induces a natural ring structure on lim −

x 7!xp
OC/$OC , which in turn yields a ring structure on

O := lim −
x 7!xp

OC ∼= lim −
x 7!xp

OC/$OC (2.1)
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where the isomorphism is given by Proposition 2.1.7. Moreover, this ring structure on O does
not depend on the choice of $; indeed, by the proof of Proposition 2.1.7 we find that the sum
of two arbitrary elements a = (an) and b = (bn) in O is given by

(a+ b)n = lim
m!∞

(am+n + bm+n)p
m
.

We then identify C[ as the fraction field of O. It is clear by construction that C[ is perfect of
characteristic p.

We assert that C[ admits a valuation ν[ given by ν[(c) := ν(c]) for every c ∈ C[. It

is evident by construction that ν[ is a multiplicative homomorphism. Let us now consider
arbitrary elements a = (an) and b = (bn) in C[. We wish to establish an inequality

ν[(a+ b) ≥ min(ν[(a), ν[(b)).

We may assume ν[(a) ≥ ν[(b), or equivalently ν(a0) ≥ ν(b0). Then for each n ≥ 0 we have

ν(an) =
1

pn
ν(a0) ≥ 1

pn
ν(b0) = ν(bn),

which means an/bn ∈ OC . Therefore we may write a = br for some r ∈ O and find

ν[(a+ b) = ν[((r + 1)b) = ν[(r + 1) + ν[(b) ≥ ν[(b) = min(ν[(a), ν[(b))

where the inequality follows by observing r + 1 ∈ O.

Let us now take an arbitrary element c = (cn) ∈ C[. We have an inequality

ν(cn) =
1

pn
ν(c0) =

1

pn
ν[(c) for each n ≥ 0. (2.2)

Hence we deduce that O is indeed the valuation ring of C[. Moreover, given any N > 0
the inequality (2.2) implies that we have ν(cn) ≥ ν($) for all n ≤ N if and only if ν[(c) ≥
pNν($). Therefore the bijection (2.1) becomes a homeomorphism if we endow OC[ = O and

lim −
x 7!xp

OC/$OC respectively with the ν[-adic topology and the inverse limit topology. As the

latter topology is complete, it follows that C[ is complete. �

Remark. Our proof of Proposition 2.1.8 remains valid if C is replaced by an arbitrary com-
plete nonarchimedean field L (with its “tilt” L[ defined as in Definition 2.1.5). However, if L

is not perfectoid the valuation on the tilt L[ becomes trivial. For example, the “tilt” of Qp is
easily seen to be isomorphic to Fp (with the trivial valuation).

Proposition 2.1.9. The map OC[ −! OC/pOC which sends each c ∈ OC[ to the image of
c] in OC/pOC is a ring homomorphism.

Proof. This is evident by the definition of the natural ring structure on OC[ given in
the proof of Proposition 2.1.8. �

Lemma 2.1.10. For every y ∈ OC there exists an element z ∈ OC[ with y − z] ∈ pOC .

Proof. Let y denote the image of y in OC/pOC . Since the p-th power map on OC/pOC
is surjective, there exists an element z′ = (z′n) ∈ lim −

x 7!xp
OC/pOC with z′0 = x. The assertion

now follows by taking z ∈ OC[ to be the image of z′ under the bijection

OC[ ' lim −
x 7!xp

OC/pOC

as given by Proposition 2.1.7 and Proposition 2.1.8. �
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Proposition 2.1.11. The valued fields C and C[ have the same value groups.

Proof. Let ν[ be the valuation on C[ given by ν[(c) = ν(c]) for every c ∈ C[. Since

we have ν[
(
(C[)×

)
⊆ ν(C×) by construction, we only need to show ν(C×) ⊆ ν[

(
(C[)×

)
.

Let us consider an arbitrary element y ∈ C×. We wish to find an element z ∈ (C[)× with

ν[(z) = ν(y). Since ν is nondiscrete, we can choose an element $ ∈ OC with 0 < ν($) < ν(p).
Let us write y = $nu for some n ∈ Z and u ∈ OC with ν(u) < ν($). By Lemma 2.1.10 there

exist elements $[ and u[ in OC[ with $ − ($[)
] ∈ pOC and u− (u[)

] ∈ pOC . Then we find

ν[($[) = ν(($[)
]
) = ν

(
($)− ($ − ($[)

]
)
)

= ν($),

ν[(u[) = ν((u[)
]
) = ν

(
(u)− (u− (u[)

]
)
)

= ν(u).

Hence we obtain the desired assertion by taking z = ($[)nu[. �

Corollary 2.1.12. The field C[ is a perfectoid field of characteristic p.

Proof. Proposition 2.1.11 implies that the value group of C[ is not trivial. Since C[ is
perfect by construction, the assertion follows by Proposition 2.1.4 and Proposition 2.1.8. �

Corollary 2.1.13. If C is of characteristic p, there exists a natural identification C[ ∼= C.

Proof. As C is perfect by Proposition 2.1.4, the assertion is evident by construction. �

Example 2.1.14. Let ̂Qp(p1/p∞) denote the p-adic completions of
⋃
n≥1

Qp(p
1/pn). The p-adic

valuation on ̂Qp(p1/p∞) is clearly not discrete. In addition, the valuation ring of ̂Qp(p1/p∞) is

easily seen to be ̂Zp[p1/p∞ ], the p-adic completion of the Zp-algebra obtained by adjoining all
p-power roots of p. We also have an isomorphism

̂Zp[p1/p∞ ]/p ' Zp[p1/p∞ ]/p ' Fp[u1/p∞ ]/u

where Fp[u1/p∞ ] denotes the perfection of the polynomial ring Fp[u]. Since the p-th power

map on Fp[u1/p∞ ]/u is evidently surjective, we deduce that ̂Qp(p1/p∞) is a perfectoid field.
Moreover, we obtain an identification

lim
x7!xp

̂Zp[p1/p∞ ]/p ' lim
x 7!xp

Fp[u1/p∞ ]/u ' ̂Fp[u1/p∞ ]

where ̂Fp[u1/p∞ ] denotes the u-adic completion of Fp[u1/p∞ ], and consequently find that the

tilt of ̂Qp(p1/p∞) is isomorphic to ̂Fp((u1/p∞)), the u-adic completion of the perfection of the
Laurent series ring Fp((u)).

Remark. A similar argument shows that the p-adic completion of Qp(µp∞) is also a perfectoid

field whose tilt is isomorphic to Fp((u1/p∞)). Therefore the tilting functor is not fully faithful
on the category of perfectoid fields over Qp. This fact is a foundation for Scholze’s theory of
diamonds as developed in [Sch18] and [SW20].

On the other hand, for every perfectoid field C the tilting functor induces an equivalence
between the category of perfectoid fields over C and the category of perfectoid fields over C[.
This is a special case of the tilting equivalence, which is the main result of Scholze’s paper
[Sch12].
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2.2. The de Rham period ring BdR

For the rest of this chapter, we write F := C[K for the tilt of CK . In addition, for every

element c = (cn)n≥0 in F we write c] := c0. We also fix a valuation ν on CK with ν(p) = 1,

and let ν[ denote the valuation on F given by ν[(c) = ν(c]) for every c ∈ F .

Definition 2.2.1. We define the infinitesimal period ring, denoted by Ainf , to be the ring of
Witt vectors over OF . For every c ∈ OF , we write [c] for its Teichmüller lift in Ainf .

Remark. The ring Ainf is not (Qp,ΓK)-regular in any meaningful way.

Proposition 2.2.2. There exists a surjective ring homomorphism θ : Ainf −! OCK with

θ

( ∞∑
n=0

[cn]pn

)
=
∞∑
n=0

c]np
n for all cn ∈ OF . (2.3)

Proof. Let us define a map θ : OF −! OCK/pOCK by

θ(c) = c] for every c ∈ OF

where c] denotes the image of c] in OCK/pOCK . Then θ is a ring homomorphism as noted in

Proposition 2.1.9. Moreover, by construction θ lifts to a map θ̂ : OF −! OCK defined by

θ̂(c) = c] for every c ∈ OF .

Since θ̂ is clearly multiplicative, Lemma 2.3.1 from Chapter II yields a ring homomorphism
θ : Ainf ! OCK satisfying (2.3).

It remains to establish the surjectivity of θ. Let x be an arbitrary element in OCK . Since
OCK is p-adically complete, it is enough to find elements c0, c1, · · · ∈ OF with

x−
m∑
n=0

c]np
n ∈ pm+1OCK for each m = 0, 1, · · · .

In fact, by Lemma 2.1.10 we can inductively define each cm to be any element in OF with

1

pm

(
x−

m−1∑
n=0

c]np
n

)
− c]m ∈ pOCK ,

thereby completing the proof. �

Remark. As explained in [BC, Lemma 4.4.1], it is possible to construct the homomorphism
θ in Proposition 2.2.2 without using Lemma 2.3.1 from Chapter II. In this approach, we first
define θ as a set theoretic map given by (2.3), then show that θ is indeed a ring homomorphism
using the explicit addition and multiplication rules for Ainf .

For the rest of this chapter, we let θ : Ainf −! OCK be the ring homomorphism constructed
in Proposition 2.2.2, and let θ[1/p] : Ainf [1/p] −! CK be the induced map on Ainf [1/p]. We

also choose an element p[ ∈ OF with (p[)
]

= p, and set ξ := [p[]− p ∈ Ainf .

Definition 2.2.3. We define the de Rham local ring by

B+
dR := lim −

j

Ainf [1/p]/ ker(θ[1/p])j .

We denote by θ+
dR the natural projection B+

dR � Ainf [1/p]/ ker(θ[1/p]).
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Remark. We will soon define the de Rham period ring BdR as the fraction field of B+
dR

after verifying that B+
dR is a discrete valuation ring. At this point, it is instructive to explain

Fontaine’s insight behind the construction of BdR. As briefly discussed in Chapter I, the main
motivation for constructing the de Rham period ring BdR is to obtain the de Rham comparison
isomorphism as stated in Chapter I, Theorem 1.2.2. Recall that the de Rham cohomology
admits a canonical filtration, called the Hodge filtration, whose associated graded vector space
recovers the Hodge cohomology. Since the Hodge-Tate decomposition can be stated in terms
of the Hodge-Tate period ring BHT as noted after Theorem 1.2.1 in Chapter I, Fontaine sought
to construct BdR as a ring with a canonical filtration which recovers BHT as the associated
graded algebra. His idea was to construct the subring B+

dR as a complete discrete valuation
ring with an action of ΓK such that there exist ΓK-equivariant isomorphisms

B+
dR/mdR ' CK and mdR/m

2
dR ' CK(1)

where mdR denotes the maximal ideal of B+
dR. In characteristic p, the theory of Witt vectors

provides a natural way to construct a complete discrete valuation ring with a specified perfect
residue field. Fontaine judiciously applied the Witt vector construction to the field CK of
characteristic 0 by passing to characteristic p. More precisely, he first defined the ring Ainf as
the ring of Witt vectors over the perfect ring

RK := lim −
x 7!xp

OCK/pOCK ,

which he called the perfection of OCK/pOCK , then constructed the homomorphism θ[1/p] as
above to realize CK as a quotient of Ainf [1/p]; indeed, since RK is naturally isomorphic to OF
by Proposition 2.1.7, our construction provides a modern interpretation for the construction
of RK and Ainf . Fontaine then define B+

dR as the completion of Ainf [1/p] with respect to

ker(θ[1/p]) as in Definition 2.2.3, and showed that B+
dR satisfies all the desired properties.

We now aim to show that B+
dR is a complete discrete valuation ring with CK as the residue

field. To this end we study several properties of ker(θ).

Lemma 2.2.4. For each n ≥ 0 we have ker(θ) ∩ pnAinf = pn ker(θ).

Proof. We only need to show ker(θ) ∩ pnAinf ⊆ pn ker(θ) since the reverse containment
is obvious. Let a be an arbitrary element in ker(θ) ∩ pnAinf . We may write a = pnb for some
b ∈ Ainf . Then we have

0 = θ(a) = θ(pnb) = pnθ(b),

and consequently find θ(b) = 0 since OCK has no nonzero p-torsion. We thus deduce that
a = pnb lies in pn ker(θ). �

Lemma 2.2.5. Every element a ∈ ker(θ) is of the form a = cξ + dp for some c, d ∈ Ainf .

Proof. We wish to show that a lies in the ideal generated by ξ and p, or equivalently by
[p[] and p. Let us write

a =
∑
n≥0

[cn]pn = [c0] +
∑
n≥1

[cn]pn for some cn ∈ OF .

It suffices to show that [c0] is divisible by [p[]. Since we have 0 = θ(a) =
∑
n≥0

c]np
n, we deduce

that c]0 is divisible by p, and consequently find

ν[(c0) = ν(c]0) ≥ ν(p) = ν((p[)
]
) = ν[(p[).

Hence there exists some r ∈ OF with c0 = p[r, which yields [c0] = [p[][r] as desired. �
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Proposition 2.2.6. The ideal ker(θ) in Ainf is generated by ξ.

Proof. By definition we have

θ(ξ) = θ([p[]− p) = (p[)
] − p = p− p = 0.

Hence we only need to show that ker(θ) lies in the ideal ξAinf . Let a be an arbitrary element
in ker(θ). Since Ainf is p-adically separated and complete by construction, it suffices to show
that there exist elements c0, c1, · · · ,∈ Ainf with

a−
m∑
n=0

cnξp
n ∈ pm+1Ainf for each m ≥ 0.

We proceed by induction on m to find such c0, c1, · · · ∈ Ainf . As both ξ and a lie in ker(θ),
we have

a−
m−1∑
n=0

cnξp
n ∈ ker(θ) ∩ pmAinf = pm ker(θ)

by the induction hypothesis and Lemma 2.2.4. Then by Lemma 2.2.5 we find some cm, dm ∈
Ainf with

a−
m−1∑
n=0

cnξp
n = pm(cmξ + pdm),

or equivalently

a−
m∑
n=0

cnξp
n = pm+1dm

as desired. �

Remark. Proposition 2.2.6 yields an isomorphism of valuation rings Ainf/ξAinf ' OCK . Since
the construction of Ainf depends only on the field F , we find that the ideal ξAinf contains all
necessary information for recovering the perfectoid field CK from its tilt F . In fact, as we
will see in Chapter IV, every “untilt” of F can be realized as the fraction field of Ainf/I for a
unique principal ideal I in Ainf .

Corollary 2.2.7. The ideal ker(θ[1/p]) in Ainf [1/p] is generated by ξ.

Proof. For every a ∈ ker(θ[1/p]), we have pna ∈ ker(θ) for some n > 0. Hence the
assertion follows from Proposition 2.2.6. �

Remark. In fact, our proof shows that every generator of ker(θ) generates ker(θ[1/p]).

Lemma 2.2.8. Every a ∈ Ainf [1/p] with ξa ∈ Ainf is an element in Ainf .

Proof. Since we have θ(ξa) = θ[1/p](ξa) = 0, there exists an element b ∈ Ainf with
ξa = ξb by Proposition 2.2.6. We then find a = b as Ainf is an integral domain, thereby
deducing the desired assertion. �

Lemma 2.2.9. For all j ≥ 1 we have Ainf ∩ ker(θ[1/p])j = ker(θ)j.

Proof. We only need to show Ainf ∩ker(θ[1/p])j ⊆ ker(θ)j since the reverse containment
is obvious. Let a be an arbitrary element in Ainf ∩ ker(θ[1/p])j . Corollary 2.2.7 implies that
there exists some r ∈ Ainf [1/p] with a = ξjb. Then we find b ∈ Ainf by Lemma 2.2.8, and
consequently obtain a ∈ ker(θ)j by Proposition 2.2.6. �
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Proposition 2.2.10. We have
∞⋂
j=1

ker(θ)j =
∞⋂
j=1

ker(θ[1/p])j = 0.

Proof. By Lemma 2.2.9 we find

∞⋂
j=1

ker(θ[1/p])j =

 ∞⋂
j=1

ker(θ)j

 [1/p]. (2.4)

Hence it suffices to prove

∞⋂
j=1

ker(θ)j = 0. Take an arbitrary element c ∈
∞⋂
j=1

ker(θ)j . As usual,

let us write c =
∑

[cn]pn for some cn ∈ OF . By Proposition 2.2.6 we find that c is divisible

by arbitrarily high powers of ξ = [p[]− p. This implies that c0 is divisible by arbitrarily high

powers of p[, which in turn means c0 = 0 as we have

ν[(p[) = ν((p[)
]
) = ν(p) = 1 > 0.

Hence we find some c′ ∈ Ainf with c = pc′. Moreover, Lemma 2.2.9 and (2.4) together yield

c′ ∈ Ainf ∩

 ∞⋂
j=1

ker(θ)j

 [1/p] = Ainf ∩

 ∞⋂
j=1

ker(θ[1/p])j

 =

∞⋂
j=1

ker(θ)j .

Then an easy induction shows that c is infinitely divisible by p, which in turn implies c = 0
as Ainf is p-adically complete. �

Corollary 2.2.11. The natural map

Ainf [1/p] −! lim −
j

Ainf [1/p]/ ker(θ[1/p])j = B+
dR

is injective. In particular, we may canonically identify Ainf [1/p] as a subring of B+
dR.

Proposition 2.2.12. The ring B+
dR is a complete discrete valuation ring with ker(θ+

dR) as the

maximal ideal and CK as the residue field. Moreover, the element ξ is a uniformizer of B+
dR.

Proof. Since both θ+
dR and θ[1/p] are surjective by construction, we have an isomorphism

B+
dR/ ker(θ+

dR) ' Ainf [1/p]/ ker(θ[1/p]) ' CK .

In addition, a general fact as stated in [Sta, Tag 05GI] implies that every element b ∈ B+
dR

is a unit if and only if θ+
dR(b) is a unit in B+

dR/ ker(θ+
dR) ' CK , or equivalently b /∈ ker(θ+

dR).

Therefore B+
dR is a local ring with ker(θ+

dR) as the maximal ideal and CK as the residue field.

Consider an arbitrary nonzero element b ∈ B+
dR. For each j ≥ 0, let bj and ξj respectively

denote the image of b and ξ under the projection B+
dR � Ainf [1/p]/ ker(θ[1/p])j . Take the

maximum i ≥ 0 with bi = 0. Then for each j > i we have

bj ∈ ker(θ[1/p])i/ ker(θ)j and bj /∈ ker(θ[1/p])i+1/ ker(θ)j .

Hence by Proposition 2.2.6 we may write bj = ξijuj for some uj ∈ B+
dR/ ker(θ[1/p])j with uj /∈

ker(θ[1/p])/ ker(θ[1/p])j . For each j > i we let u′j denote the image of uj inB+
dR/ ker(θ[1/p])j−i.

By construction the sequence (u′j)j>i gives rise to a unit u ∈ B+
dR such that b = ξiu. Moreover,

it is not hard to see that u is uniquely determined by b even though the uj ’s are not uniquely
determined. We thus deduce that B+

dR is a discrete valuation ring with ξ as a uniformizer.

The completeness of B+
dR then follows by Proposition 2.2.6 and Proposition 2.2.10. �

https://stacks.math.columbia.edu/tag/05GI
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Definition 2.2.13. We define the de Rham period ring BdR as the fraction field of B+
dR.

Remark. Our argument so far in this subsection remains valid if CK is replaced by any
algebraically closed perfectoid field of characteristic 0. Hence we may regard BdR as a functor
from the category of algebraically closed perfectoid fields over Qp to the category of complete
valued fields. In Chapter IV we will provide a geometric interpretation of this statement.

Proposition 2.2.14. For every uniformizer π of B+
dR, the filtration

{
πnB+

dR

}
n∈Z of BdR

satisfies the following properties:

(i) πn+1B+
dR ⊆ π

nB+
dR for all n ∈ Z.

(ii)
⋂
n∈Z

πnB+
dR = 0 and

⋃
n∈Z

πnB+
dR = BdR.

(iii)
(
πmB+

dR

)
·
(
πnB+

dR

)
⊆ πm+nB+

dR for all m,n ∈ Z.

Proof. This is immediate by Proposition 2.2.12. �

Remark. The filtration
{
πiB+

dR

}
n∈Z does not depend on the choice of π; indeed, we have

an identification πiB+
dR = ker(θ+

dR)n for each n ∈ Z.

Proposition 2.2.15. Let W (k) denote the ring of Witt vectors over k, and let K0 denote the
fraction field of W (k).

(1) The field K is a finite totally ramified extension of K0.

(2) There exists a natural commutative diagram

K0 Ainf [1/p]

K B+
dR

CK

θ+
dR

(2.5)

where the diagonal map is the natural inclusion.

Proof. Let m denote the maximal ideal of OK . The natural projection OK/pOK �
OK/m = k admits a canonical section s : k −! OK/pOK ; indeed, the ring OK/pOK is a
vector space over k with basis given by 1, π, · · · , πe−1, where π is a uniformizer in OK with
ν(π) = 1/e. In addition, the map s induces a homomorphism of discretely valued fields
K0 −! K by Lemma 2.3.1 from Chapter II. We thus obtain the statement (1) by observing
that both K0 and K are complete with the residue field k.

Let us now prove the statement (2). Since k is perfect, the section s : k −! OK/pOK
induces a natural map

k −! lim −
x!xp

OCK/pOCK
∼= OF

where the isomorphism is given by Proposition 2.1.7. We then obtain the top horizontal
arrow in (2.5) by Lemma 2.3.1 from Chapter II, and the upper right vertical arrow in (2.5)
by Corollary 2.2.11. Hence B+

dR is a complete discrete valuation ring over K0. Moreover, the

statement (1) implies that K is a separable algebraic extension of K0, thereby yielding the left
vertical map in (2.5). Now we deduce by Hensel’s lemma that the subfield K of the residue
field CK uniquely lifts to a subfield of B+

dR over K0, thereby obtaining the middle horizontal
arrow in (2.5). �



88 III. PERIOD RINGS AND FUNCTORS

Our final goal of this subsection is to describe and study the natural action of ΓK on BdR,
especially in relation to the natural filtration on BdR as described in Proposition 2.2.14. We
invoke the following technical result without proof.

Proposition 2.2.16. There exists a refinement of the discrete valuation topology on B+
dR that

satisfies the following properties:

(i) The natural map Ainf −! B+
dR identifies Ainf as a closed subring of B+

dR.

(ii) The map θ[1/p] is continuous and open with respect to the p-adic topology on CK .

(iii) There exists a continuous map log : Zp(1) −! B+
dR with

log(ε) =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
for every ε ∈ Zp(1)

under the natural identification Zp(1) = lim −µp
v(K) =

{
ε ∈ OF : ε] = 1

}
.

(iv) The multiplication by any uniformizer yields a closed embedding on B+
dR.

(v) The ring B+
dR is complete.

Remark. We will eventually prove Proposition 2.2.16 in Chapter IV after constructing the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve relies only on results that we have discussed prior to Proposition 2.2.16. The
readers can also find a sketch of the proof in [BC, Exercise 4.5.3] and the discussion after
Definition 4.4.7 in loc. cit.

Here we provide an indication on why Proposition 2.2.16 is necessary for our discussion.
As we will soon describe, the natural ΓK-action on BdR is induced by the action of ΓK on
CK such that the map θ+

dR is ΓK-equivariant. Proposition 2.2.16 ensures that the map θ+
dR

is furthermore continuous with respect to the p-adic topology on CK , thereby allowing us to
exploit the topological properties of the ΓK-action on CK .

For the rest of this chapter, we consider the map log : Zp(1) −! B+
dR as given by Propo-

sition 2.2.16. In addition, we fix a Zp-basis element ε ∈ Zp(1) and write t := log(ε). We often

regard ε as an element in OF via the identification Zp(1) =
{
c ∈ OF : c] = 1

}
as noted in

Proposition 2.2.16. We also regard Ainf [1/p] as a subring of B+
dR in light of Corollary 2.2.11.

Lemma 2.2.17. We have ν[(ε− 1) =
p

p− 1
.

Proof. By construction we may write ε = (ζpn) where each ζpn is a primitive pn-th root

of unity in K. Then we find

ν[(ε− 1) = ν
(

(ε− 1)]
)

= ν
(

lim
n!∞

(ζpn − 1)p
n
)

= lim
n!∞

pnν(ζpn − 1) = lim
n!∞

pn

pn−1(p− 1)

=
p

p− 1

by the proof of Proposition 2.1.8 and the continuity of the valuation ν. �

Lemma 2.2.18. The element ξ divides [ε]− 1 in Ainf .

Proof. By construction we have

θ([ε]− 1) = ε] − 1 = 1− 1 = 0.

Hence the assertion immediately follows from Proposition 2.2.6. �
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Proposition 2.2.19. The element t ∈ B+
dR is a uniformizer.

Proof. By Lemma 2.2.18 we have

[ε]− 1 ∈ ξAinf and t =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ ξB+

dR.

We also find
([ε]− 1)n

n
∈ ξ2B+

dR for each n ≥ 2. Since ξ is a uniformizer of B+
dR as noted in

Proposition 2.2.12, it suffices to prove [ε]− 1 /∈ ξ2B+
dR.

Suppose for contradiction that [ε]− 1 lies in ξ2B+
dR. Then the proof of Proposition 2.2.12

shows that the image of [ε] − 1 under the projection B+
dR � Ainf [1/p]/ ker(θ[1/p])2 is zero.

Since [ε] − 1 is an element of Ainf , we find [ε] − 1 ∈ ker(θ[1/p])2 ∩ Ainf . Hence Proposition
2.2.6 and Lemma 2.2.9 together imply that [ε]− 1 is divisible by ξ2 in Ainf .

Since the first coefficients in the Teichmüller expansions for [ε]− 1 and ξ2 are respectively

equal to [ε− 1] and [(p[)2], we obtain

ν[(ε− 1) ≥ ν[((p[)2) = 2ν[(p[) = 2ν((p[)
]
) = 2ν(p) = 2.

On the other hand, if p is odd we have ν[(ε − 1) < 2 by Lemma 2.2.17. Therefore we find
p = 2. Let us now take an element c ∈ Ainf with [ε] − 1 = ξ2c. We then compare the

coefficients of p in the Teichmüller expansions of both sides and find ε− 1 = c1(p[)4 where c1

denote the coefficient of p in the Teichmüller expansion of c. Hence we have

ν[(ε− 1) ≥ ν[((p[)4) = 4ν[(p[) = 4ν((p[)
]
) = 4ν(p) = 4,

thereby obtaining a desired contradiction since Lemma 2.2.17 yields ν[(ε− 1) = 2. �

Remark. Our proof shows that the power series
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
converges with respect

to the discrete valuation topology on B+
dR. Hence we can define the uniformizer t ∈ B+

dR
without using the topology given in Proposition 2.2.16.

Lemma 2.2.20. For every m ∈ Zp we have log(εm) = m log(ε).

Proof. Let us first consider the case where m is an integer. We know that the identity

log((1 + x)m) = m log(1 + x)

holds as formal power series. Since t = log(ε) converges in B+
dR as noted Proposition 2.2.19,

we set x = ε− 1 to obtain the desired assertion.

We now consider the general case. Let us choose a sequence (mi) of integers such that
mi−m is divisible by pi. As log(ε) = t is a uniformizer of B+

dR by Proposition 2.2.19, we find

lim
i!∞

mi log(ε) = m log(ε)

by Proposition 2.2.16. In addition, it is straightforward to verify

lim
i!∞

εmi = εm

with respect to the valuation topology on F . We thus find

log(εm) = log

(
lim
i!∞

εmi
)

= lim
i!∞

log(εmi) = lim
i!∞

mi log(ε) = m log(ε)

where the second identity follows from the continuity of the logarithm map as noted in Propo-
sition 2.2.16. �
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Theorem 2.2.21 (Fontaine [Fon82]). The natural action of ΓK on BdR satisfies the following
properties:

(i) The logarithm map and θ+
dR are ΓK-equivariant.

(ii) For every γ ∈ ΓK we have γ(t) = χ(γ)t.

(iii) Each tnB+
dR is stable under the action of ΓK .

(iv) There exists a canonical ΓK-equivariant isomorphism⊕
n∈Z

tnB+
dR/t

n+1B+
dR
∼=
⊕
n∈Z

CK(n) = BHT.

(v) BdR is (Qp,ΓK)-regular with a natural identification BΓK
dR
∼= K.

Proof. Let us first describe the natural action of ΓK on BdR. The action of ΓK on CK
naturally induces an action on F = lim −

x 7!xp
CK as the p-th power map on CK is ΓK-equivariant.

More precisely, given an arbitrary element x = (xn) ∈ F we have γ(x) = (γ(xn)) for every
γ ∈ ΓK . It is then evident that OF is stable under the action of ΓK . Hence by functoriality
of Witt vectors we obtain a natural action of ΓK on Ainf [1/p] with

γ
(∑

[cn]pn
)

=
∑

[γ(cn)]pn for all γ ∈ ΓK , cn ∈ OF .

We then find that θ and θ[1/p] are both ΓK-equivariant by construction, and consequently
deduce that both ker(θ) and ker(θ[1/p]) are stable under the action of ΓK . Therefore ΓK
naturally acts on B+

dR = lim −j Ainf [1/p]/ ker(θ[1/p])j and its fraction field BdR.

With our discussion in the preceding paragraph, it is straightforward to verify the property
(i). Moreover, for every γ ∈ ΓK we use Lemma 2.2.20 to find

γ(t) = γ(log(ε)) = log(γ(ε)) = log(εχ(γ)) = χ(γ) log(ε) = χ(γ)t,

thereby deducing the property (ii). The property (iii) then immediately follows as B+
dR is

stable under the action of ΓK .

Let us now prove the property (iv). We note that the natural isomorphism

B+
dR/ ker(θ+

dR) = B+
dR/tB

+
dR ' Ainf [1/p]/ ker(θ[1/p]) ' CK .

is ΓK-equivariant, and consequently obtain ΓK-equivariant isomorphisms

ker(θ+
dR)n/ ker(θ+

dR)n+1 = tnB+
dR/t

n+1B+
dR ' CK(n) for all n ∈ Z

by the property (ii) and Lemma 3.1.11 in Chapter II. These isomorphisms are canonical since
t is uniquely determined up to Z×p -multiple by Lemma 2.2.20. We thus obtain the desired
ΓK-equivariant isomorphism by taking the direct sum of the above isomorphisms.

It remains to verify the property (v). The field BdR is (Qp,ΓK)-regular as noted in
Example 1.1.2. In addition, since the map θ+

dR is ΓK-equivariant by construction, the natural

injective homomorphism K ↪−! B+
dR given by Proposition 2.2.15 is also ΓK-equivariant,

thereby inducing an injective homomorphism

K = K
ΓK ↪−! (B+

dR)ΓK ↪−! BΓK
dR . (2.6)

Then by the properties (iii) and (iv) we get an injective K-algebra homomorphism⊕
n∈Z

(BΓK
dR ∩ t

nB+
dR)/(BΓK

dR ∩ t
n+1B+

dR) ↪−! BΓK
HT .

Since we have BΓK
HT
∼= K by Theorem 3.1.12 in Chapter II, the K-algebra on the source has

dimension at most 1. Hence we find dimK B
ΓK
dR ≤ 1, thereby completing the proof by (2.6) �
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2.3. Filtered vector spaces

In this subsection we set up a categorical framework for our discussion of BdR-admissible
representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

(1) A filtered vector space over L is a vector space V over L along with a collection of
subspaces { Filn(V ) }n∈Z that satisfies the following properties:

(i) Filn(V ) ⊇ Filn+1(V ) for every n ∈ Z.

(ii)
⋂
n∈Z

Filn(V ) = 0 and
⋃
n∈Z

Filn(V ) = V .

(2) A graded vector space over L is a vector space V over L along with a direct sum

decomposition V =
⊕
n∈Z

Vn.

(3) A L-linear map between two filtered vector spaces V and W over L is called a
morphism of filtered vector spaces if it maps each Filn(V ) into Filn(W ).

(4) A L-linear map between two graded vector spaces V =
⊕
n∈Z

Vn and W =
⊕
n∈Z

Wn over

L is called a morphism of graded vector spaces if it maps each Vn into Wn.

(5) For a filtered vector space V over L, we define its associated graded vector space by

gr(V ) :=
⊕
n∈Z

Filn(V )/Filn+1(V )

and write grn(V ) := Filn(V )/Filn+1(V ) for every n ∈ Z.

(6) We denote by FilL the category of finite dimensional filtered vector spaces over L.

Example 2.3.2. We present some motivating examples for our discussion.

(1) The ring BdR is a filtered K-algebra with Filn(BdR) := tnB+
dR and gr(BdR) ∼= BHT

by Proposition 2.2.14 and Theorem 2.2.21.

(2) For a proper smooth variety X over K, the de Rham cohomology Hn
dR(X/K) with

the Hodge filtration is a filtered vector space over K whose associated graded vector
space recovers the Hodge cohomology.

(3) For every V ∈ RepQp(ΓK), we may regard DBdR
(V ) = (V ⊗Qp BdR)ΓK as a filtered

vector space over K with

Filn(DBdR
(V )) := (V ⊗Qp t

nB+
dR)ΓK .

Remark. For an arbitrary proper smooth variety X over K, we have a canonical ΓK-
equivariant isomorphism of filtered vector spaces

DBdR
(Hn

ét(XK ,Qp)) ∼= Hn
dR(X/K)

by Theorem 1.2.2 in Chapter I. In particular, we can recover the Hodge filtration onHn
dR(X/K)

from the ΓK-action on Hn
ét(XK ,Qp).

Lemma 2.3.3. Let V be a finite dimensional filtered vector space over a field L. There exists
a basis (vi,j) for V such that for every n ∈ Z the vectors vi,j with i ≥ n form a basis for
Filn(V ).

Proof. Since V is finite dimensional, we have Filn(V ) = 0 for all sufficiently large n and
Filn(V ) = 0 for all sufficiently small n. Hence we can construct such a basis by inductively
extending a basis for Filn(V ) to a basis for Filn−1(V ). �
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Definition 2.3.4. Let L be an arbitrary field.

(1) Given two filtered vector spaces V and W over L, we define the convolution filtration
on V ⊗LW by

Filn(V ⊗LW ) :=
∑
i+j=n

Fili(V )⊗L Filj(W ).

(2) For every filtered vector space V over L, we define the dual filtration on the dual
space V ∨ = HomL(V,L) by

Filn(V ∨) :=
{
f ∈ V ∨ : Fil1−n(V ) ⊆ ker(f)

}
.

(3) We define the unit object L[0] in FilL to be the vector space L with the filtration

Filn(L[0]) :=

{
L if n ≤ 0,

0 if n > 0.

Remark. The use of Fil1−n(V ) rather than Fil−n(V ) in (2) is to ensure that L[0] is self-dual.

Proposition 2.3.5. Let V be a filtered vector space over a field L. Then we have canonical
isomorphisms of filtered vector spaces

V ⊗L L[0] ∼= L[0]⊗L V ∼= V and (V ∨)∨ ∼= V.

Proof. For every n ∈ Z we find

Filn(V ⊗L L[0]) =
∑
i+j=n

Fili(V )⊗L Filj(L[0]) ∼=
∑
i≥n

Fili(V ) = Filn(V ),

and consequently obtain an identification of filtered vector spaces

V ⊗L L[0] ∼= L[0]⊗L V ∼= V.

Moreover, the natural evaluation isomorphism ε : V ∼= (V ∨)∨ yields an isomorphism of filtered
vector spaces since for every n ∈ Z we have

Filn
(
(V ∨)∨

) ∼= { v ∈ V : Fil1−n(V ∨) ⊆ ker(ε(v))
}

=
{
v ∈ V : f(v) = 0 for all f ∈ Fil1−n(V ∨)

}
=
{
v ∈ V : f(v) = 0 for all f ∈ V ∨ with Filn(V ) ⊆ ker(f)

}
= Filn(V ).

Therefore we complete the proof. �

Proposition 2.3.6. Let V and W be finite dimensional filtered vector spaces over a field L.
Then we have a natural identification of filtered vector spaces

(V ⊗LW )∨ ∼= V ∨ ⊗LW∨.

Proof. By Lemma 2.3.3 we can choose bases (vi,k) and (wj,l) for V and W such that
for every n ∈ Z the vectors (vi,k)i≥n and (wj,l)j≥n respectively form bases for Filn(V ) and
Filn(W ). Let (fi,k) and (gj,l) be the dual bases for V ∨ and W∨. Then the vectors (fi,k ⊗ gj,l)
form a basis for the vector space (V ⊗L W )∨ ∼= V ∨ ⊗L W∨. Moreover, for every n ∈ Z the
vectors (fi,k)i≤−n and (gj,l)j≤−n respectively form bases for Filn(V ∨) and Filn(W∨). Hence
we find that for every n ∈ Z both Filn ((V ⊗LW )∨) and Filn(V ∨⊗LW∨) are spanned by the
vectors (fi,k ⊗ gj,l)i+j≤−n, thereby deducing the desired assertion. �
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Lemma 2.3.7. Let V =
⊕
n∈Z

Vn and W =
⊕
n∈Z

Wn be graded vector spaces over a field L. A

morphism f : V −!W of graded vector spaces is an isomorphism if and only if it is bijective.

Proof. The assertion immediately follows by observing that f is the direct sum of the
induced morphisms fn : Vn −!Wn. �

Proposition 2.3.8. Let L be an arbitrary field. A bijective morphism f : V −! W in FilL
is an isomorphism in FilL if and only if the induced map gr(f) : gr(V ) −! gr(W ) is bijective.

Proof. If f is an isomorphism of filtered vector spaces, then gr(f) is clearly an isomor-
phism. Let us now assume that gr(f) is an isomorphism. We wish to show that for every
n ∈ Z the induced map Filn(f) : Filn(V ) −! Filn(W ) is an isomorphism. Since each Filn(f)
is injective by the bijectivity of f , it suffices to show

dimL Filn(V ) = dimL Filn(W ) for every n ∈ Z.
The map gr(f) is an isomorphism of graded vector spaces by Lemma 2.3.7, and consequently
induces an isomorphism

grn(V ) ' grn(W ) for every n ∈ Z.
Hence for every n ∈ Z we find

dimL Filn(V ) =
∑
i≥n

dimL gri(V ) =
∑
i≥n

dimL gri(W ) = dimL Filn(W )

as desired. �

Example 2.3.9. Let us define L[1] to be the vector space L with the filtration

Filn(L[1]) :=

{
L if n ≤ 1,

0 if n > 1.

The bijective morphism L[0] −! L[1] given by the identity map on L is not an isomorphism
in FilL since Fil1(L[0]) = 0 and Fil1(L[1]) = L are not isomorphic. Moreover, the induced
map gr(L[0]) −! gr(L[1]) is a zero map.

Proposition 2.3.10. Let L be an arbitrary field. For any V,W ∈ FilL there exists a natural
isomorphism of graded vector spaces

gr(V ⊗LW ) ∼= gr(V )⊗L gr(W ).

Proof. Since we have a direct sum decomposition

gr(V )⊗L gr(W ) =
⊕
n∈Z

 ⊕
i+j=n

gri(V )⊗L grj(W )

 ,

it suffices to find a natural isomorphism

grn(V ⊗LW ) ∼=
⊕
i+j=n

gri(V )⊗L grj(W ) for every n ∈ Z. (2.7)

By Lemma 2.3.3 we can choose bases (vi,k) and (wj,l) for V and W such that for every
n ∈ Z the vectors (vi,k)i≥n and (wj,l)j≥n respectively span Filn(V ) and Filn(W ). Let vi,k
denote the image of vi,k under the map Fili(V ) � gri(V ), and let wj,l denote the image of

wj,l under the map Filj(W ) � grj(W ). Since each Filn(V ⊗L W ) is spanned by the vectors
(vi,k ⊗wj,l)i+j≥n, we obtain the identification (2.7) by observing that both sides are spanned
by the vectors (vi,k ⊗ wj,l)i+j=n. �
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2.4. Properties of de Rham representations

Definition 2.4.1. We say that V ∈ RepQp(ΓK) is de Rham if it is BdR-admissible. We

write RepdR
Qp (ΓK) := RepBdR

Qp (ΓK) for the category of de Rham p-adic ΓK-representations. In

addition, we write DHT and DdR respectively for the functors DBHT
and DBdR

.

Example 2.4.2. Below are some important examples of de Rham representations.

(1) For every n ∈ Z the Tate twist Qp(n) of Qp is de Rham; indeed, the inequality

dimK DdR(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as DdR(Qp(n)) = (Qp(n)⊗QpBdR)ΓK contains

a nonzero element 1⊗ t−n by Theorem 2.2.21.

(2) Every CK-admissible representation is de Rham by a result of Sen.

(3) For every proper smooth variety X over K, the étale cohomology Hn
ét(XK ,Qp) is de

Rham by a theorem of Faltings as briefly discussed in Chapter I, Theorem 1.2.2.

The general formalism discussed in §1 readily yields a number of nice properties for de
Rham representations and the functor DdR. Our main goal in this subsection is to extend
these properties in order to incorporate the additional structures induced by the filtration{
tnB+

dR

}
n∈Z on BdR.

Lemma 2.4.3. Given any n ∈ Z, every V ∈ RepQp(ΓK) is de Rham if and only if V (n) is
de Rham.

Proof. Since we have identifications

V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n)⊗Qp Qp(−n),

the assertion follows from Proposition 1.2.4 and the fact that every Tate twist of Qp is de
Rham as noted in Example 2.4.2. �

Proposition 2.4.4. Let V be a de Rham representation of ΓK . Then V is Hodge-Tate with
a natural K-linear isomorphism of graded vector spaces

gr(DdR(V )) ∼= DHT(V ).

Proof. For every n ∈ Z we have a short exact sequence

0 tn+1B+
dR tnB+

dR tnB+
dR/t

n+1B+
dR 0,

which induces an exact sequence

0
(
V ⊗Qp t

n+1B+
dR

)ΓK (
V ⊗Qp t

nB+
dR

)ΓK (
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK

and consequently yields an injective K-linear map

grn(DdR(V )) = Filn(DdR(V ))/Filn+1(DdR(V )) ↪−!
(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK .

Therefore we obtain an injective K-linear map of graded vector spaces

gr(DdR(V )) ↪−!
⊕
n∈Z

(
V ⊗Qp (tnB+

dR/t
n+1B+

dR)
)ΓK ∼= (V ⊗Qp BHT)ΓK = DHT(V )

where the middle isomorphism follows from Theorem 2.2.21. We then find

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is de Rham, both inequalities
should be in fact equalities, thereby yielding the desired assertion. �
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Example 2.4.5. Let V be an extension of Qp(m) by Qp(n) with m < n. We assert that V
is de Rham. By Lemma 2.4.3 we may assume m = 0. Then we have a short exact sequence

0 Qp(n) V Qp 0. (2.8)

Since the functor DdR is left exact by construction, we obtain a left exact sequence

0 DdR(Qp(n)) DdR(V ) DdR(Qp).

We wish to show dimK DdR(V ) = dimQp V = 2. Since we have

dimK DdR(Qp(n)) = dimK DdR(Qp) = 1

by Example 2.4.2, it suffices to show the surjectivity of the map DdR(V ) −! DdR(Qp) ∼= K.

As B+
dR is faithfully flat over Qp, the sequence (2.8) yields a short exact sequence

0 Qp(n)⊗Qp B
+
dR V ⊗Qp B

+
dR Qp ⊗Qp B

+
dR 0.

In addition, by Theorem 2.2.21 and Proposition 2.2.15 we have identifications

(Qp(n)⊗Qp B
+
dR)ΓK ∼= (tnB+

dR)ΓK = 0,

(Qp ⊗Qp B
+
dR)ΓK ∼= (B+

dR)ΓK ∼= K.

We thus obtain a long exact sequence

0 0 (V ⊗Qp B
+
dR)ΓK K H1(ΓK , t

nB+
dR).

Since we have (V ⊗Qp B
+
dR)ΓK ⊆ (V ⊗Qp BdR)ΓK = DdR(V ), it suffices to prove

H1(ΓK , t
nB+

dR) = 0. (2.9)

By Theorem 2.2.21 we have a short exact sequence

0 tn+1B+
dR tnB+

dR CK(n) 0,

which in turn yields a long exact sequence

CK(n)ΓK H1(ΓK , t
n+1B+

dR) H1(ΓK , t
nB+

dR) H1(ΓK ,CK(n)).

Then by Theorem 3.1.12 in Chapter II we obtain an identification

H1(ΓK , t
n+1B+

dR) ∼= H1(ΓK , t
nB+

dR). (2.10)

Hence by induction we only need to prove (2.9) for n = 1.

Take an arbitrary element α1 ∈ H1(ΓK , tB
+
dR). We wish to show α1 = 0. Regarding α1 as

a cocycle, we use (2.10) to inductively construct sequences (αm) and (ym) with the following
properties:

(i) αm ∈ H1(ΓK , t
mB+

dR) and ym ∈ tmB+
dR for all m ≥ 1,

(ii) αm+1(γ) = αm(γ) + γ(ym)− ym for all γ ∈ ΓK and m ≥ 1.

Now, since t is a uniformizer in B+
dR as noted in Proposition 2.2.19, we may take an element

y =
∑
ym ∈ B+

dR. Then we have

α1(γ) + γ(y)− y ∈ H1(ΓK , t
mB+

dR) for all γ ∈ ΓK and m ≥ 0,

and consequently find α1(γ) +γ(y)− y = 0 for all γ ∈ ΓK . We thus deduce α1 = 0 as desired.
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Remark. It is a highly nontrivial fact that every non-splitting extension of Qp(1) by Qp in
RepQp(ΓK) is Hodge-Tate but not de Rham. The existence of such an extension follows from
the identification

Ext1
Qp[ΓK ](Qp(1),Qp) ∼= H1(ΓK ,Qp(−1)) ∼= K

where the second isomorphism is a consequence of the Tate local duality for p-adic represen-
tations. Moreover, such an extension is Hodge-Tate as noted in Example 1.1.12. The difficult
part is to prove that such an extension is not de Rham. For this part we need a very deep
result that every de Rham representation is potentially semistable.

Proposition 2.4.6. Let V be a de Rham representation of ΓK . For every n ∈ Z we have
grn(DdR(V )) 6= 0 if and only if n is a Hodge-Tate weight of V .

Proof. This is an immediate consequence of Proposition 2.4.4 and Definition 1.1.14. �

Remark. Proposition 2.4.6 provides the main reason for our choice of the sign convention in
the definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of
a de Rham representation V indicate where the filtration of DdR(V ) has a jump. In particular,
for a proper smooth variety X over K, the Hodge-Tate weights of the étale cohomology
Hn

ét(XK ,Qp) give the positions of “jumps” for the Hodge filtration on the de Rham cohomology
Hn

dR(X/K) by the isomorphism of filtered vector spaces

DdR(Hn
ét(XK ,Qp)) ∼= Hn

dR(X/K).

Example 2.4.7. The Tate twist Qp(m) of Qp is a 1-dimensional de Rham representation
with the Hodge-Tate weight −m as noted in Example 1.1.15 and Example 2.4.2. Hence by
Proposition 2.4.6 we find

Filn(DdR(Qp(m))) ∼=

{
K for n ≤ −m,
0 for n > −m.

In particular, for m = 0 we obtain an identification DdR(Qp) ∼= K[0].

Proposition 2.4.8. For every V ∈ RepdR
Qp (ΓK), we have a natural ΓK-equivariant isomor-

phism of filtered vector spaces

DdR(V )⊗K BdR
∼= V ⊗Qp BdR.

Proof. Since V is de Rham, Theorem 1.2.1 implies that the natural map

DdR(V )⊗K BdR −! (V ⊗Qp BdR)⊗K BdR
∼= V ⊗Qp (BdR ⊗K BdR) −! V ⊗Qp BdR

is a ΓK-equivariant isomorphism of vector spaces over BdR. Moreover, this map is a morphism
of filtered vector spaces as each arrow above is easily seen to be a morphism of filtered vector
spaces. Hence by Proposition 2.3.8 it suffices to show that the induced map

gr(DdR(V )⊗K BdR) −! gr(V ⊗Qp BdR) (2.11)

is an isomorphism. By Proposition 2.3.10, Proposition 2.4.4 and Theorem 2.2.21 we obtain
identifications

gr(DdR(V )⊗K BdR) ∼= gr(DdR(V ))⊗K gr(BdR) ∼= DHT(V )⊗K BHT,

gr(V ⊗Qp BdR) ∼= V ⊗Qp gr(BdR) ∼= V ⊗Qp BHT.

We thus identify the map (2.11) with the natural map

DHT(V )⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1. The desired assertion now follows by Proposition 2.4.4. �
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Proposition 2.4.9. The functor DdR with values in FilK is faithful and exact on RepdR
Qp (ΓK).

Proof. Let VecK denote the category of finite dimensional vector spaces over K. The
faithfulness of DdR on RepdR

Qp (ΓK) is an immediate consequence of Proposition 1.2.2 since the

forgetful functor FilK −! VecK is faithful. Hence it remains to verify the exactness of DdR

on RepdR
Qp (ΓK). Consider an exact sequence of de Rham representations

0 U V W 0. (2.12)

The functor DdR with values in FilK is left exact by construction. In other words, for every
n ∈ Z we have a left exact sequence

0 Filn(DdR(U)) Filn(DdR(V )) Filn(DdR(W )). (2.13)

We wish to show that this sequence extends to a short exact sequence. By Proposition 1.2.2
the sequence (2.12) induces a short exact sequence of vector spaces

0 DHT(U) DHT(V ) DHT(W ) 0.

Moreover, by the definition of DHT we find that this sequence is indeed a short exact sequence
of graded vector spaces. Then by Proposition 2.4.4 we may rewrite this sequence as

0 gr(DdR(U)) gr(DdR(V )) gr(DdR(W )) 0.

by Proposition 2.4.4. Hence for every n ∈ Z we have

dimK Filn(DdR(V )) =
∑
i≥n

dimK gri(DdR(V ))

=
∑
i≥n

dimK gri(DdR(U)) +
∑
i≥n

dimK gri(DdR(W ))

= dimK Filn(DdR(U)) + dimK Filn(DdR(W )),

thereby deducing that the sequence (2.13) extends to a short exact sequence as desired. �

Corollary 2.4.10. Let V be a de Rham representation. Every subquotient W of V is a de
Rham representation with DdR(W ) naturally identified as a subquotient of DdR(V ) in FilK .

Proof. This is an immediate consequence of Proposition 1.2.3 and Proposition 2.4.9. �

Proposition 2.4.11. Given any V,W ∈ RepdR
Qp (ΓK), we have V ⊗Qp W ∈ RepdR

Qp (ΓK) with

a natural isomorphism of filtered vector spaces

DdR(V )⊗K DdR(W ) ∼= DdR(V ⊗Qp W ). (2.14)

Proof. By Proposition 1.2.4 we find V ⊗Qp W ∈ RepdR
Qp (ΓK) and obtain the desired

isomorphism (2.14) as a map of vector spaces. Moreover, since the construction of the map
(2.14) rests on the multiplicative structure of BdR as shown in the proof of Proposition 1.2.4, it
is straightforward to verify that the map (2.14) is a morphism in FilK . Hence by Proposition
2.3.8 it suffices to show that the induced map

gr(DdR(V )⊗K DdR(W )) −! gr(DdR(V ⊗Qp W )) (2.15)

is an isomorphism. Since both V and W are Hodge-Tate by Proposition 2.4.4, we have a
natural isomorphism

DHT(V )⊗K DHT(W ) ∼= DHT(V ⊗Qp W ) (2.16)

by Proposition 1.2.4. Therefore we complete the proof by identifying the maps (2.15) and
(2.16) using Proposition 2.3.10 and Proposition 2.4.4. �
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Proposition 2.4.12. For every de Rham representation V , we have ∧n(V ) ∈ RepdR
Qp (ΓK)

and Symn(V ) ∈ RepdR
Qp (ΓK) with natural isomorphisms of filtered vector spaces

∧n(DdR(V )) ∼= DdR(∧n(V )) and Symn(DdR(V )) ∼= DdR(Symn(V )).

Proof. Proposition 1.2.5 implies that both ∧n(V ) and Symn(V ) are de Rham for every
n ≥ 1. In addition, Proposition 1.2.5 yields the desired isomorphisms as maps of vector
spaces. Then Corollary 2.4.10 and Proposition 2.4.11 together imply that these maps are
isomorphisms in FilK . �

Proposition 2.4.13. For every de Rham representation V , the dual representation V ∨ is de
Rham with a natural perfect paring of filtered vector spaces

DdR(V )⊗K DdR(V ∨) ∼= DdR(V ⊗Qp V
∨) −! DdR(Qp) ∼= K[0]. (2.17)

Proof. By Proposition 1.2.6 we find V ∨ ∈ RepdR
Qp (ΓK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition 2.4.11 implies that this pairing is a
morphism in FilK . We thus obtain a bijective morphism of filtered vector spaces

DdR(V )∨ −! DdR(V ∨).

Therefore by Proposition 2.3.8 it suffices to show that the induced map

gr(DdR(V )) −! gr(DdR(V ∨)) (2.18)

is an isomorphism. Since V is Hodge-Tate by Proposition 2.4.4, we have a natural isomorphism

DHT(V )∨ ∼= DHT(V ∨) (2.19)

by Proposition 1.2.6. We thus deduce the desired assertion by identifying the maps (2.18)
and (2.19) using Proposition 2.4.4. �

Let us now discuss some additional facts about de Rham representations and the functor
DdR.

Proposition 2.4.14. Let V be a p-adic representation of ΓK . Let L be a finite extension of
K with absolute Galois group ΓL.

(1) There exists a natural isomorphism of filtered vector spaces

DdR,K(V )⊗K L ∼= DdR,L(V )

where we set DdR,K(V ) := (V ⊗Qp BdR)ΓK and DdR,L(V ) := (V ⊗Qp BdR)ΓL.

(2) V is de Rham if and only if it is de Rham as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately
follows from the first statement. Let L′ be the Galois closure of L over K with the absolute
Galois group ΓL′ and set DdR,L′(V ) := (V ⊗Qp BdR)ΓL′ . Then we have identifications

DdR,K(V )⊗K L = (DdR,K(V )⊗K L′)Gal(L′/L) and DdR,L(V ) = DdR,L′(V )Gal(L′/L).

Hence we may replace L by L′ to assume that L is Galois over K. Moreover, since the
construction of BdR depends only on CK , we get a natural L-linear map

DdR,K(V )⊗K L −! DdR,L(V ).

It is evident that this map induces a morphism of filtered vector spaces over L where the
filtrations on the source and the target are given as in Example 2.4.2. We then have

Filn(DdR,K(V )) = Filn(DdR,L(V ))Gal(L/K) for all n ∈ Z,
thereby deducing the desired assertion by the Galois descent for vector spaces. �
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Remark. Proposition 2.4.14 extends to any complete discrete-valued extension L of K inside
CK , based on the “completed unramified descent argument” as explained in [BC, Proposition
6.3.8]. This fact has the following immediate consequences:

(1) Every potentially unramified p-adic representation is de Rham; indeed, we have
already mentioned this in Example 2.4.2 since being CK-admissible is the same as
being potentially unramified as noted in Example 1.1.4.

(2) For one-dimensional p-adic representations, being de Rham is the same as being
Hodge-Tate by Proposition 1.1.13 and Lemma 2.4.3.

Example 2.4.15. Let η : ΓK −! Z×p be a continuous character with finite image. Then
there exists a finite extension L of K with absolute Galois group ΓL such that Qp(η) is trivial
as a representation of ΓL. Hence by Example 2.4.7 and Proposition 2.4.14 we find that Qp(η)
is de Rham with an isomorphism of filtered vector spaces

DdR(Qp(η))⊗K L ∼= L[0],

and consequently obtain an identification

DdR(Qp(η)) ∼= K[0] ∼= DdR(Qp).

In particular, we deduce that the functor DdR on RepdR
Qp (ΓK) with values in FilK is not full.

We close this section by introducing a very important conjecture, known as the Fontaine-
Mazur conjecture, which predicts a criterion for the “geometricity” of global p-adic represen-
tations.

Conjecture 2.4.16 (Fontaine-Mazur [FM95]). Fix a number field E, and denote by OE the
ring of integers in E. Let V be a finite dimensional representation of Gal(Q/E) over Qp with
the following properties:

(i) For all but finitely many prime ideals p of OE, the representation V is unramified at
p in the sense that the action of the inertia group at p is trivial.

(ii) For all prime ideals of OE lying over p, the restriction of V to Gal(Qp/Ep) is de
Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of
the étale cohomology Hn

ét(XQ,Qp(m)) for some m,n ∈ Z.

Remark. If V is one-dimensional, then Conjecture 2.4.16 follows essentially by the class field
theory. For two-dimensional representations, Conjecture 2.4.16 has been verified in many
cases by the work of Kisin and Emerton. However, Conjecture 2.4.16 remains wide open for
higher dimensional representations.

The local version of Conjecture 2.4.16 is known to be false. More precisely, there exists a
de Rham representation of ΓK which does not arises as a subquotient of Hn

ét(XK ,Qp)(m) for
any proper smooth variety X over K and integers n,m.
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3. Crystalline representations

In this section we define and study the crystalline period ring and crystalline representa-
tions. Our primary reference for this section is Brinon and Conrad’s notes [BC, §9].

3.1. The crystalline period ring Bcris

Throughout this section, we write W (k) for the ring of Witt vectors over k, and K0 for

its fraction field. Recall that we have fixed an element p[ ∈ OF with (p[)
]

= p and set

ξ = [p[]− p ∈ Ainf .

Definition 3.1.1. We define the integral crystalline period ring by

Acris :=

{ ∞∑
n=0

an
ξn

n!
∈ B+

dR : an ∈ Ainf with lim
n!∞

an = 0

}
,

and write B+
cris := Acris[1/p].

Remark. In the definition of Acris above, it is vital to consider the refinement of the discrete
valuation topology on B+

dR as described in Proposition 2.2.16. While the convergence of

the infinite sum
∑
n≥0

an
ξn

n!
relies on the discrete valuation topology on B+

dR, the limit of the

coefficients an should be taken with respect to the p-adic topology on Ainf .

We warn the readers that the terminology given in Definition 3.1.1 is not standard at
all. In fact, most authors do not give a separate name for the ring Acris. Our choice of the
terminology comes from the fact that Acris plays the role of the crystalline period ring in the
integral p-adic Hodge theory.

Proposition 3.1.2. We have t ∈ Acris and tp−1 ∈ pAcris.

Proof. By Lemma 2.2.18 we may write [ε] − 1 = ξc for some c ∈ Ainf . Then we obtain
an expression

t =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
=
∞∑
n=1

(−1)n+1(n− 1)!cn · ξ
n

n!
. (3.1)

We thus find t ∈ Acris as we have lim
n!∞

(n− 1)!cn = 0 in Ainf relative to the p-adic topology.

It remains to show tp−1 ∈ pAcris. Let us set

ť :=

p∑
n=1

(−1)n+1 ([ε]− 1)n

n
. (3.2)

Since (n− 1)! is divisible by p for all n > p, we find t− ť ∈ pAcris by (3.1). Hence it suffices
to prove ťp−1 ∈ pAcris.

The terms for n < p in (3.2) are all divisible by [ε]−1 in Acris, whereas the term for n = p
in (3.2) can be written as

(−1)p+1 ([ε]− 1)p

p
= (−1)p+1 ([ε]− 1)p−1

p
· ([ε]− 1).

In other words, we may write

ť = ([ε]− 1)

(
a+ (−1)p+1 ([ε]− 1)p−1

p

)
for some a ∈ Acris. It is therefore enough to show ([ε]− 1)p−1 ∈ pAcris.
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Since we have ([ε]−1)−[ε− 1] ∈ pAinf ⊆ pAcris, we only need to prove [(ε− 1)p−1] ∈ pAcris.
In addition, by Lemma 2.2.17 we have

ν[
(
(ε− 1)p−1

)
= p = ν[

(
(p[)p

)
,

and consequently find that [(ε− 1)p−1] is divisible by [p[]p = (ξ + p)p. We thus deduce the
desired assertion by observing that ξp = p · (p− 1)! · (ξp/p!) is divisible by p in Acris. �

Remark. As a consequence, we find

tp

p!
=
tp−1

p
· t

(p− 1)!
∈ Acris.

In fact, it is not hard to prove that for every a ∈ Acris with θ+
dR(a) = 0 we have an/n! ∈ Acris

for all n ≥ 1.

Corollary 3.1.3. We have an identification B+
cris[1/t] = Acris[1/t].

Proof. Proposition 3.1.2 implies that p is a unit in Acris[1/t], thereby yielding

B+
cris[1/t] = Acris[1/p, 1/t] = Acris[1/t]

as desired. �

Definition 3.1.4. We define the crystalline period ring by

Bcris := B+
cris[1/t] = Acris[1/t].

Remark. Let us briefly explain Fontaine’s insight behind the construction of Bcris. The main
motivation for constructing the crystalline period ring Bcris is to obtain the Grothendieck mys-
terious functor as described in Chapter I, Conjecture 1.2.3. Recall that, for a proper smooth
variety X over K with a proper smooth integral model X over OK , the crystalline cohomol-
ogy Hn

cris(Xk,W (k)) admits a natural Frobenius action and refines the de Rham cohomology
Hn

dR(X/K) via a canonical isomorphism

Hn
cris(Xk,W (k))[1/p]⊗K0 K

∼= Hn
dR(X/K).

In addition, since Ainf is by construction the ring of Witt vectors over a perfect Fp-algebra OF ,
it admits the Frobenius automorphism ϕinf as noted in Chapter II, Example 2.3.2. Fontaine
sought to construct Bcris as a sufficiently large subring of BdR on which ϕinf naturally ex-
tends. For BdR there is no natural extension of ϕinf since ker(θ[1/p]) is not stable under ϕinf .
Fontaine’s key observation is that by adjoining to Ainf the elements of the form ξn/n! for n ≥ 1
we obtain a subring of Ainf [1/p] such that the image of ker(θ[1/p]) is stable under ϕinf . This
observation led Fontaine to consider the ring Acris defined in Definition 3.1.1. The only issue
with Acris is that it is not (Qp,ΓK)-regular, which turns out to be resolved by considering the
ring Bcris = Acris[1/t].

Proposition 3.1.5. The ring Bcris is naturally a filtered subalgebra of BdR over K0 which is
stable under the action of ΓK .

Proof. By construction we have

Ainf [1/p] ⊆ Acris[1/p] = B+
cris ⊆ Bcris ⊆ BdR.

In addition, the proof of Proposition 2.2.15 yields a unique homomorphism K −! BdR which
extends a natural homomorphism K0 −! Ainf [1/p]. Hence by Example 2.3.2 we naturally
identify Bcris as a filtered subalgebra of BdR over K0 with Filn(Bcris) := Bcris ∩ tnB+

dR.

It remains to show that Bcris = Acris[1/t] is stable under the action of ΓK . Since ΓK acts
on t by the cyclotomic character as noted in Theorem 2.2.21, we only need to show that Acris
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is stable under the action of ΓK . Consider an arbitrary element γ ∈ ΓK and an arbitrary
sequence (an) in Ainf with lim

n!∞
an = 0. Since ker(θ) is stable under the ΓK-action as noted in

Theorem 2.2.21, we may write γ(ξ) = cγξ for some cγ ∈ Ainf by Proposition 2.2.6. We then
have lim

n!∞
γ(an)cnγ = 0 as the ΓK-action on Ainf is evidently continuous with respect to the

p-adic topology. Hence we find

γ

( ∞∑
n=0

an
ξn

n!

)
=
∞∑
n=0

γ(an)cnγ
ξn

n!
∈ Acris

as desired. �

Remark. We provide a functorial perspective for the ΓK-actions on Bcris and BdR which can
be useful in many occasions. Since the definitions of Bcris and BdR only depend on the valued
field CK , we may regard Bcris and BdR as functors which associate topological rings to each
complete and algebraically closed valued field. Then by functoriality the action of ΓK on CK
induces the actions of ΓK on Bcris and BdR. In particular, since Bcris is a subfunctor of BdR

we deduce that the ΓK-action on Bcris is given by the restriction of the ΓK-action on BdR as
asserted in Proposition 3.1.5.

We also warn that Fil0(Bcris) = Bcris∩B+
dR is not equal to B+

cris. For example, the element

α =
[ε1/p2

]− 1

[ε1/p]− 1

lies in Bcris ∩B+
dR but not in B+

cris.

In order to study the ΓK-action on Bcris we invoke the following crucial (and surprisingly
technical) result without proof.

Proposition 3.1.6. The natural ΓK-equivariant map Bcris ⊗K0 K −! BdR is injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving
the semistable period ring can be found in Fontaine and Ouyang’s notes [FO, Theorem 6.14].
Note however that the assertion is obvious if we have K = K0, which amounts to the condition
that K is unramified over Qp.

Proposition 3.1.7. There exists a natural isomorphism of graded K-algebras

gr(Bcris ⊗K0 K) ∼= gr(BdR) ∼= BHT.

Proof. We only need to establish the first identification as the second identification
immediately follows from Theorem 2.2.21 as noted in Example 2.3.2. By Proposition 3.1.6
the natural map Bcris ⊗K0 K −! BdR induces an injective morphism of graded K-algebras

gr(Bcris ⊗K0 K) ↪−! gr(BdR). (3.3)

In particular, we have an injective map

gr0(Bcris ⊗K0 K) ↪−! gr0(BdR) ∼= CK
where the isomorphism is induced by θ+

dR. Moreover, this map is surjective since the image

of Bcris ⊗K0 K in BdR contains Ainf [1/p] and consequently maps onto CK by θ+
dR. Therefore

we obtain an isomorphism

gr0(Bcris ⊗K0 K) ∼= gr0(BdR) ∼= CK .
This implies that each grn(Bcris⊗K0K) is a vector space over CK . Moreover, each grn(Bcris⊗K0

K) contains a nonzero element given by tn ⊗ 1. Hence the injective map (3.3) must be an
isomorphism since each grn(BdR) has dimension 1 over CK . �
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Theorem 3.1.8 (Fontaine [Fon94]). The ring Bcris is (Qp,ΓK)-regular with BΓK
cris
∼= K0.

Proof. Let Ccris denote the fraction field of Bcris. Proposition 3.1.5 implies that Ccris is

a subfield of BdR which is stable under the action of ΓK . Hence we have K0 ⊆ BΓK
cris ⊆ CΓK

cris.
Then Proposition 3.1.6 and Theorem 2.2.21 together yield injective maps

BΓK
cris ⊗K0 K ↪−! BΓK

dR
∼= K and CΓK

cris ⊗K0 K ↪−! BΓK
dR
∼= K,

thereby implying K0 = BΓK
cris = CΓK

cris.

It remains to check the condition (ii) in Definition 1.1.1. Consider an arbitrary nonzero
element b ∈ Bcris on which ΓK acts via a character η : ΓK −! Q×p . We wish to show that b
is a unit in Bcris.

By Proposition 2.2.19 we may write b = tib′ for some b′ ∈ (B+
dR)× and i ∈ Z. Since t is a

unit in Bcris by construction, the element b is a unit in Bcris if and only if b′ is a unit in Bcris.
Moreover, Theorem 2.2.21 implies that ΓK acts on b′ = b · t−i via the character ηχ−i. Hence
we may replace b by b′ to assume that b is a unit in B+

dR.

Since θ+
dR is ΓK-equivariant as noted in Theorem 2.2.21, the action of ΓK on θ+

dR(b) ∈ CK
is given by the character η. Then by the continuity of the ΓK-action on CK we find that
η is continuous. Therefore we may consider η as a character with values in Z×p . Moreover,

we have θ+
dR(b) 6= 0 as b is assumed to be a unit in B+

dR. Hence Theorem 1.1.8 implies that
η−1(IK) is finite.

Let us denote by Kun the maximal unramified extension of K in K, and by K̂un the p-adic

completion of Kun. By definition K̂un is a p-adic field with IK as the absolute Galois group.
Therefore by our discussion in the preceding paragraph there exists a finite extension L of

K̂un with the absolute Galois group ΓL such that η−1 becomes trivial on ΓL ⊆ IK . Since ΓK
acts on θ+

dR(b) via η, we find θ+
dR(b) ∈ CΓL

K = CΓL
L = L by Theorem 3.1.12 in Chapter II.

Let us write W (k) for the ring of Witt vectors over k, and K̂un
0 for the fraction field of

W (k). Proposition 2.2.15 yields a commutative diagram

K̂un
0 Ainf [1/p]

L B+
dR

CK

θ+
dR

(3.4)

where all maps are ΓK-equivariant. Moreover, both horizontal maps are injective as K̂un
0 and

L are fields. We henceforth identify K̂un
0 and L with their images in BdR. Then we have

K̂un
0 ⊆ Ainf [1/p] ⊆ Bcris. (3.5)

We assert that b lies in (the image of) L. Let us write b̂ := θ+
dR(b). If suffices to show

b = b̂. Suppose for contradiction that b and b̂ are distinct. Since we have θ+
dR(b̂) = b̂ = θ+

dR(b)

by the commutativity of the diagram (3.4), we may write b − b̂ = tju for some j > 0 and
u ∈ (B+

dR)×. Moreover, we find

γ(b− b̂) = γ(b)− γ(b̂) = η(γ)(b− b̂) for every γ ∈ ΓK .
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Then under the ΓK-equivariant isomorphism

tjB+
dR/t

j+1B+
dR
∼= CK(j)

given by Theorem 2.2.21, the element b − b̂ ∈ tjB+
dR yields a nonzero element in CK(j) on

which ΓK acts via the character η. Therefore Theorem 1.1.8 implies that (χjη−1)(IK) is finite.
Since η−1(IK) is also finite as noted above, we deduce that χj(IK) is finite as well, thereby
obtaining a desired contradiction by Lemma 1.1.7.

Let us now regard b as an element in L. Proposition 2.2.15 implies that L is a finite

extension of K̂un
0 . Hence we can choose a minimal polynomial equation

bd + a1b
d−1 + · · ·+ ad−1b+ ad = 0 with an ∈ K̂un

0 .

Since the minimality of the equation implies ad 6= 0, we obtain an expression

b−1 = −a−1
d (bd−1 + a1b

d−2 + · · ·+ ad−1).

We then find b−1 ∈ Bcris by (3.5), thereby completing the proof. �

Our final goal in this subsection is to construct the Frobenius endomorphism on Bcris. To
this end we state another technical result without proof.

Proposition 3.1.9. Let A0
cris be the Ainf-subalgebra in Ainf [1/p] generated by the elements of

the form ξn/n! with n ≥ 0.

(1) The ring Acris is naturally identified with the p-adic completion of A0
cris.

(2) The action of ΓK on Acris is continuous.

Remark. In fact, Fontaine originally defined the ring Acris as the p-adic completion of A0
cris,

and obtained an identification with our definition of Acris. The proof requires yet another
description of the ring Acris as a p-adically completed tensor product. The readers can find a
sketch of the proof in [BC, Proposition 9.1.1 and Proposition 9.1.2].

Lemma 3.1.10. The Frobenius automorphism of Ainf uniquely extends to a ΓK-equivariant
continuous endomorphism ϕ+ on B+

cris.

Proof. The Frobenius automorphism of Ainf uniquely extends to an automorphism on
Ainf [1/p], which we denote by ϕinf . By construction we have

ϕinf(ξ) = [(p[)p]− p = [p[]p − p = (ξ + p)p − p. (3.6)

Hence we may write ϕinf(ξ) = ξp + pc for some c ∈ Ainf .

Let us define A0
cris as in Proposition 3.1.9. Then we have

ϕinf(ξ) = p · (c+ (p− 1)! · (ξp/p!)),
and consequently find

ϕinf(ξ
n/n!) = (pn/n!) · (c+ (p− 1)! · (ξp/p!))n ∈ A0

cris for all n ≥ 1

by observing that pn/n! is an element of Zp. Hence A0
cris is stable under ϕinf . Moreover, by

construction ϕinf is ΓK-equivariant and continuous on Ainf [1/p] with respect to the p-adic
topology. We thus deduce by Proposition 3.1.9 that the endomorphism ϕinf on A0

cris uniquely
extends to a continuous ΓK-equivariant endomorphism ϕ+ on B+

cris = Acris[1/p]. �

Remark. The identity (3.6) shows that ϕinf(ξ) is not divisible by ξ, which implies that ker(θ)
is not stable under ϕinf . Hence the endomorphism ϕ+ onB+

cris (or the Frobenius endomorphism
on Bcris that we are about to construct) is not compatible with the filtration on BdR.
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Proposition 3.1.11. The Frobenius automorphism of Ainf naturally extends to a ΓK-equivariant
endomorphism ϕ on Bcris with ϕ(t) = pt.

Proof. As noted in Lemma 3.1.10, the Frobenius automorphism of Ainf uniquely ex-
tends to a ΓK-equivariant continuous endomorphism ϕ+ on B+

cris. In addition, the proof of
Proposition 3.1.2 shows that the power series expression

t =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n

converges with respect to the p-adic topology in Acris. Hence we use Lemma 2.2.20 and the
continuity of ϕ+ on Acris to find

ϕ+(t) =
∞∑
n=1

(−1)n+1 (ϕ([ε])− 1)n

n
=
∞∑
n=1

(−1)n+1 ([εp]− 1)n

n
= log(εp) = p log(ε) = pt.

Since ΓK acts on t via χ, it follows that ϕ+ uniquely extends to a ΓK-equivariant endomor-
phism ϕ on Bcris = B+

cris[1/t]. �

Remark. The endomorphism ϕ is not continuous on Bcris, even though it is a unique ex-
tension of the continuous endomorphism ϕ+ on B+

cris. The issue is that, as pointed out by

Colmez in [Col98], the natural topology on B+
cris induced by the p-adic topology on Acris does

not agree with the subspace topology inherited from Bcris.

Definition 3.1.12. We refer to the endomorphism ϕ in Proposition 3.1.11 as the Frobenius
endomorphism of Bcris. We also write

Be := { b ∈ Bcris : ϕ(b) = b }

for the ring of Frobenius-invariant elements in Bcris.

Remark. In Chapter IV, we will use the Fargues-Fontaine curve to prove a surprising fact
that Be is a principal ideal domain.

We close this subsection by stating two fundamental results about ϕ without proof.

Theorem 3.1.13. The Frobenius endomorphism ϕ of Bcris is injective.

Theorem 3.1.14. The natural sequence

0 Qp Be BdR/B
+
dR 0

is exact.

Remark. We will prove both Theorem 3.1.13 and Theorem 3.1.14 in Chapter IV using the
Fargues-Fontaine curve. There will be no circular reasoning; the construction of the Fargues-
Fontaine curve does not rely on anything that we haven’t discussed so far in this section. The
readers can also find a proof of Theorem 3.1.14 in [FO, Theorem 6.26]. We also remark that,
as mentioned in [BC, Theorem 9.1.8], there was no published proof of Theorem 3.1.13 prior
to the work of Fargues-Fontaine [FF18].

Definition 3.1.15. We refer to the exact sequence in Theorem 3.1.14 as the fundamental
exact sequence of p-adic Hodge theory.
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3.2. Properties of crystalline representations

Definition 3.2.1. We say that V ∈ RepQp(ΓK) is crystalline if it is Bcris-admissible. We

write Repcris
Qp (ΓK) := RepBcris

Qp (ΓK) for the category of crystalline p-adic ΓK-representations.

In addition, we write Dcris the functors DBcris .

Example 3.2.2. We record some essential examples of crystalline representations.

(1) Every Tate twist Qp(n) of Qp is crystalline; indeed, the inequality

dimK Dcris(Qp(n)) ≤ dimQp Qp(n) = 1

given by Theorem 1.2.1 is an equality, as Dcris(Qp(n)) = (Qp(n)⊗QpBcris)
ΓK contains

a nonzero element 1⊗ t−n by Theorem 2.2.21.

(2) For every proper smooth variety X over K with with a proper smooth integral
model X over OK , the étale cohomology Hn

ét(XK ,Qp) is crystalline by a theorem of
Faltings as discussed in Chapter I, Theorem 1.2.4; moreover, there exists a canonical
isomorphism

Dcris(H
n
ét(XK ,Qp)) ∼= Hcris(Xk/K0) = Hn

cris(Xk/W (k))[1/p]

where Hcris(Xk/W (k)) denotes the crystalline cohomology of Xk.
(3) For every p-divisible group G over OK , the rational Tate module Vp(G) is crystalline

as proved by Fontaine; indeed, there exists a natural identification

Dcris(Vp(G)) ∼= D(G)[1/p]

where D(G) denotes the Dieudonné module associated to G := G×OK k as described
in Chapter II, Theorem 2.3.6.

We aim to promote Dcris to a functor that incorporates both the Frobenius endomorphism
and the filtration on Bcris. Let us denote by σ the Frobenius automorphism of K0 as defined
in Chapter II, Definition 2.3.3. The readers may wish to review the definition and basic
properties of isocrystals as discussed in Chapter II, Definition 2.3.3 and Lemma 2.3.4.

Definition 3.2.3. A filtered isocrystal over K is an isocrystal N over K0 together with a
collection of K-spaces { Filn(NK) } which yields a structure of a filtered vector space over K
on NK := N ⊗K0 K. We denote by MFϕK the category of filtered isocrystals over K with the
natural notions of morphisms, tensor products, and duals inherited from the corresponding
notions for FilK and the category of isocrystals over K0.

Remark. Many authors use an alternative terminology filtered ϕ-modules.

Example 3.2.4. Let X be a proper smooth variety over K with a proper smooth integral
model X over OK . The crystalline cohomology Hcris(Xk/K0) = Hn

cris(Xk/W (k))[1/p] is natu-
rally a filtered isocrystal over K with the Frobenius automorphism ϕ∗Xk induced by the relative

Frobenius of XK and the filtration on Hn
cris(Xk/K0) ⊗K0 K given by the Hodge filtration on

the de Rham cohomology Hn
dR(X/K) via the canonical comparison isomorphism

Hn
cris(Xk/K0)⊗K0 K

∼= Hn
dR(X/K).

Lemma 3.2.5. The automorphism σ on K0 extends to the endomorphism ϕ on Bcris.

Proof. By the proof of Proposition 2.2.15, the natural injective map K0 ↪−! Ainf [1/p] is
a unique lift of the natural map k −! OF . Hence σ extends to ϕinf on Ainf [1/p] by definition,
and consequently extends to ϕ by Proposition 3.1.12. �
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Lemma 3.2.6. Let N be a finite dimensional vector space over K0. Every injective σ-
semilinear additive map f : N −! N is bijective.

Proof. The additivity of f implies that f(N) is closed under addition. Moreover, for all
c ∈ K0 and n ∈ N we have

cf(n) = σ(σ−1(c))f(n) = f(σ−1(c)n) ∈ f(N).

Therefore f(N) is a subspace of N over K0. We wish to show f(N) = N . Let us choose a
basis (ni) for N over K0. It suffices to prove that the vectors f(ni) are linearly independent
over K0. Assume for contradiction that there exists a nontrivial a relation

∑
cif(ni) = 0 with

ci ∈ K0. Then we find f (
∑
σ(ci)ni) = 0 by the σ-semilinearity of f , and consequently obtain

a relation
∑
σ(ci)ni = 0 by the injectivity of f . Hence we have a nontrivial relation among

the vectors ni as σ is an automorphism on K0, thereby obtaining contradiction as desired. �

Proposition 3.2.7. Let V be a p-adic representation of ΓK . Then Dcris(V ) = (V ⊗QpBcris)
ΓK

is naturally a filtered isocrystal over K with the Frobenius automorphism 1⊗ϕ and the filtration
on Dcris(V )K = Dcris(V )⊗K0 K given by

Filn(Dcris(V )K) := (V ⊗Qp Filn(Bcris ⊗K0 K))ΓK .

Proof. Since ΓK acts trivially on K, we have a natural identification

Dcris(V )K = (V ⊗Qp Bcris)
ΓK ⊗K0 K = (V ⊗Qp (Bcris ⊗K0 K))ΓK .

Then Proposition 3.1.6 implies that Dcris(V )K is a filtered vector space over K with the
filtration Filn(Dcris(V )K) as defined above. Therefore it remains to verify that the map 1⊗ϕ
is σ-semilinear and bijective on Dcris(V ). For arbitrary v ∈ V, b ∈ Bcris, and c ∈ K0 we have

(1⊗ ϕ)(c(v ⊗ b)) = (1⊗ ϕ)(v ⊗ bc) = v ⊗ ϕ(b)ϕ(c) = ϕ(c) · (1⊗ ϕ)(v ⊗ b).
Hence by Lemma 3.2.5 we find that the additive map 1 ⊗ ϕ is σ-semilinear. Moreover, the
map 1 ⊗ ϕ is injective on Dcris(K) by Theorem 3.1.13 and the left exactness of the functor
Dcris. Thus we deduce the desired assertion by Lemma 3.2.6. �

Proposition 3.2.8. Let V be a crystalline representation of ΓK . Then V is de Rham with a
natural isomorphism of filtered vector spaces

Dcris(V )K = Dcris(V )⊗K0 K
∼= DdR(V ).

Proof. Proposition 3.1.5 and Proposition 3.1.6 together imply that the natural map
Bcris ⊗K0 K −! BdR identifies Bcris ⊗K0 K as a filtered subspace of BdR over K; in other
words, we have an identification

Filn(Bcris ⊗K0 K) = (Bcris ⊗K0 K) ∩ Filn(BdR) for every n ∈ Z.

Therefore Proposition 3.2.7 yields a natural injective morphism of filtered vector spaces

Dcris(V )K = (V ⊗Qp (Bcris ⊗K0 K))ΓK ↪−! (V ⊗Qp BdR)ΓK = DdR(V )

with an identification

Filn(Dcris(V )⊗K0 K) = (Dcris(V )⊗K0 K) ∩ Filn(DdR(V )) for every n ∈ Z.

We then find

dimK0 Dcris(V ) = dimK Dcris(V )K ≤ dimK DdR(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is crystalline, both inequalities
should be in fact equalities, thereby yielding the desired assertion. �



108 III. PERIOD RINGS AND FUNCTORS

Example 3.2.9. Let η : ΓK −! Q×p be a nontrivial continuous character which factors
through Gal(L/K) for some totally ramified finite extension L of K. Then Qp(η) is de
Rham by Proposition 2.4.14. We assert that Qp(η) is not crystalline. Let us write ΓL for

the absolute Galois group of L. Since L is totally ramified over K, we have BΓL
cris
∼= K0 by

Theorem 3.1.8 and the fact that the construction of Bcris depends only on CK . Moreover, we
have Qp(η)ΓL = Qp(η) and Qp(η)Gal(L/K) = 0 by construction. Hence we find an identification

Dcris(Qp(η)) = (Qp(η)⊗Qp Bcris)
ΓK =

(
(Qp(η)⊗Qp Bcris)

ΓL
)Gal(L/K)

=
(
Qp(η)⊗Qp B

ΓL
cris

)Gal(L/K) ∼= (Qp(η)⊗Qp K0)Gal(L/K)

= Qp(η)Gal(L/K) ⊗Qp K0 = 0,

thereby deducing the desired assertion.

We now adapt the argument in §2.4 to verify that the general formalism discussed in §1
extends to the category of crystalline representations with the enhanced functor Dcris that
takes values in MFϕK .

Proposition 3.2.10. Every V ∈ Repcris
Qp (ΓK) induces a natural ΓK-equivariant isomorphism

Dcris(V )⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces a
K-linear isomorphism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

Proof. Since V is crystalline, Theorem 1.2.1 implies that the natural map

Dcris(V )⊗K0 Bcris −! (V ⊗Qp Bcris)⊗K0 Bcris
∼= V ⊗Qp (Bcris ⊗K0 Bcris) −! V ⊗Qp Bcris

is a ΓK-equivariant Bcris-linear isomorphism. Moreover, this map is visibly compatible with
the natural Frobenius endomorphisms on Dcris(V )⊗K0 Bcris = (V ⊗Qp Bcris)

ΓK ⊗K0 Bcris and
V ⊗Qp Bcris respectively given by 1 ⊗ ϕ ⊗ ϕ and 1 ⊗ ϕ. Let us now consider the induced
K-linear bijective map

(Dcris(V )K ⊗K (Bcris ⊗K0 K) −! V ⊗Qp (Bcris ⊗K0 K).

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore
by Proposition 2.3.8 it suffices to show that the induced map

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) −! gr
(
V ⊗Qp (Bcris ⊗K0 K)

)
(3.7)

is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of
graded vector spaces

gr(Dcris(V )K) ∼= gr(DdR(V )) ∼= DHT(V )

by Proposition 3.2.8 and Proposition 2.4.4. Hence Proposition 2.3.10 and Proposition 3.1.7
together yield identifications

gr (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= gr(Dcris(V )K)⊗K gr(Bcris ⊗K0 K) ∼= DHT(V )⊗K BHT,

gr
(
V ⊗Qp (Bcris ⊗K0 K)

) ∼= V ⊗Qp gr(Bcris ⊗K0 K) ∼= V ⊗Qp BHT.

We thus identify the map (3.7) with the natural map

DHT(V )⊗K BHT −! V ⊗Qp BHT

given by Theorem 1.2.1, thereby deducing the desired assertion by the fact that V is Hodge-
Tate. �
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Proposition 3.2.11. The functor Dcris with values in MFϕK is faithful and exact on Repcris
Qp (ΓK).

Proof. Let VecK0 denote the category of finite dimensional vector spaces over K0. The
faithfulness of Dcris on Repcris

Qp (ΓK) follows immediately from Proposition 1.2.2 since the for-

getful functor MFϕK −! VecK0 is faithful. Hence it remains to verify the exactness of Dcris

on Repcris
Qp (ΓK). Consider an arbitrary exact sequence of crystalline representations

0 U V W 0.

We wish to show that the sequence

0 Dcris(U) Dcris(V ) Dcris(W ) 0 (3.8)

is exact in MFϕK . This sequence is exact in VecK0 by Proposition 1.2.2, and thus is also exact
in the category of isocrystals over K0. Moreover, Proposition 3.2.8 and Proposition 2.4.9
together imply that we can identify the induced sequence of filtered vector spaces

0 Dcris(U)K Dcris(V )K Dcris(W )K 0

with the exact sequence of filtered vector spaces

0 DdR(U) DdR(V ) DdR(W ) 0

induced by (3.2). We thus deduce that the sequence (3.8) is exact in MFϕK as desired. �

Corollary 3.2.12. Let V be a crystalline representation. Every subquotient W of V is a
crystalline representation with Dcris(W ) naturally identified as a subquotient of DdR(V ).

Proof. This is an immediate consequence of Proposition 1.2.3 and Proposition 3.2.11. �

Proposition 3.2.13. Given any V,W ∈ Repcris
Qp (ΓK), we have V ⊗Qp W ∈ Repcris

Qp (ΓK) with

a natural isomorphism of filtered isocrystals

Dcris(V )⊗K0 Dcris(W ) ∼= Dcris(V ⊗Qp W ). (3.9)

Proof. By Proposition 1.2.4 we find V ⊗Qp W ∈ Repcris
Qp (ΓK) and obtain the desired

isomorphism (3.9) as a map of vector spaces. Moreover, since the construction of the map
(3.9) rests on the multiplicative structure of Bcris as shown in the proof of Proposition 1.2.4,
it is straightforward to verify that the map (3.9) is a morphism of isocrystals over K0. In
addition, Proposition 3.2.8 implies that we can identify the induced bijective K-linear map

Dcris(V )K ⊗K Dcris(W )K −! Dcris(V ⊗Qp W )K .

with the natural isomorphism of filtered vector spaces

DdR(V )⊗K DdR(W )K ∼= DdR(V ⊗Qp W )

given by Proposition 2.4.11. Therefore we deduce that the map (3.9) is an isomorphism in
MFϕK as desired. �

Proposition 3.2.14. For every crystalline representation V , we have ∧n(V ) ∈ Repcris
Qp (ΓK)

and Symn(V ) ∈ Repcris
Qp (ΓK) with natural isomorphisms of filtered isocrystals

∧n(Dcris(V )) ∼= Dcris(∧n(V )) and Symn(Dcris(V )) ∼= Dcris(Symn(V )).

Proof. Proposition 1.2.5 implies that both ∧n(V ) and Symn(V ) are crystalline for every
n ≥ 1. In addition, Proposition 1.2.5 yields the desired isomorphisms as maps of vector
spaces. Then Corollary 3.2.12 and Proposition 3.2.13 together imply that these maps are
isomorphisms in MFϕK . �
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Proposition 3.2.15. For every crystalline representation V , the dual representation V ∨ is
crystalline with a natural perfect pairing of filtered isocrystals

Dcris(V )⊗K0 Dcris(V
∨) ∼= Dcris(V ⊗Qp V

∨) −! Dcris(Qp).

Proof. By Proposition 1.2.6 we find V ∨ ∈ Repcris
Qp (ΓK) and obtain the desired perfect

pairing as a map of vector spaces. Moreover, Proposition 3.2.13 implies that this pairing is a
morphism in MFϕK . We thus obtain a bijective morphism of filtered isocrystals

Dcris(V )∨ −! Dcris(V
∨). (3.10)

Furthermore, by Proposition 3.2.8 we identify the induced morphism of filtered vector spaces

Dcris(V )∨K −! Dcris(V
∨)K

with the natural isomorphism DdR(V ) ∼= DdR(V ∨) in FilK given by Proposition 2.4.13. Hence
we deduce that the map (3.10) is an isomorphism in MFϕK , thereby completing the proof. �

Finally, we discuss some additional key properties of crystalline representations and the
functor Dcris which resolve the main defects of de Rham representations and the functor DdR.

Definition 3.2.16. Let M be a module over a ring R with an additive endomorphism f . For
every r ∈ R, we refer to the subgroup

Mf=r := {m ∈M : f(m) = rm }
as the eigenspace of f with eigenvalue r.

Lemma 3.2.17. We have an identification

Bϕ=1
cris ∩ Fil0(Bcris ⊗K0 K) = Bϕ=1

cris ∩B
+
dR = Qp.

Proof. By Proposition 3.1.6 and Theorem 3.1.14 we find

Bϕ=1
cris ∩ Fil0(Bcris ⊗K0 K) ⊆ Bϕ=1

cris ∩ Fil0(BdR) = Bϕ=1
cris ∩B

+
dR = Qp,

and thus obtain the desired identification as both Bϕ=1
cris and Fil0(Bcris⊗K0K) contain Qp. �

Proposition 3.2.18. Every V ∈ Repcris
Qp (ΓK) admits canonical isomorphisms

V ∼= (Dcris(V )⊗K0 Bcris)
ϕ=1 ∩ Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K))

∼= (Dcris(V )⊗K0 Bcris)
ϕ=1 ∩ Fil0 (Dcris(V )K ⊗K BdR) .

Proof. Proposition 3.2.10 yields a natural ΓK-equivariant isomorphism

Dcris(V )⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces an
isomorphism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

In addition, there exists a canonical isomorphism of filtered vector spaces

Dcris(V )K ⊗K BdR
∼= DdR(V )⊗K BdR

∼= V ⊗Qp BdR

given by Proposition 3.2.8 and Proposition 2.4.8. Therefore we have identifications

(Dcris(V )⊗K0 Bcris)
ϕ=1 ∼= V ⊗Qp B

ϕ=1
cris ,

Fil0 (Dcris(V )K ⊗K (Bcris ⊗K0 K)) ∼= V ⊗Qp Fil0(Bcris ⊗K0 K),

Fil0 (Dcris(V )K ⊗K BdR) ∼= V ⊗Qp B
+
dR.

The desired assertion now follows by Lemma 3.2.17. �
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Theorem 3.2.19 (Fontaine [Fon94]). The functor Dcris with values in MFϕK is exact and

fully faithful on Repcris
Qp (ΓK).

Proof. By Proposition 3.2.11 we only need to establish the fullness ofDcris on Repcris
Qp (ΓK).

Let V and W be arbitrary crystalline representations. Consider an arbitrary morphism
f : Dcris(V ) −! Dcris(W ) in MFϕK . Then f gives rise to a ΓK-equivariant map

V ⊗Qp Bcris
∼= Dcris(V )⊗K0 Bcris Dcris(W )⊗K0 Bcris

∼= W ⊗Qp Bcris
f⊗1

(3.11)

where the isomorphisms are given by Proposition 3.2.10. Moreover, Proposition 3.2.18 implies
that this map restricts to a linear map φ : V −! W . In other words, we may identify the
map (3.11) as φ ⊗ 1. In particular, since the isomorphisms in (3.11) are ΓK-equivariant, we
recover f as the restriction of φ⊗ 1 on (V ⊗Qp Bcris)

ΓK ∼= (Dcris(V )⊗K0 Bcris)
ΓK ∼= Dcris(V ).

This precisely means that f is induced by φ via the functor Dcris. �

Proposition 3.2.20. Let V be a p-adic representation of ΓK . Let L be a finite unramified
extension of K with the residue field extension l of k. Denote by ΓL the absolute Galois group
of L and by L0 the fraction field of the ring of Witt vectors over l.

(1) There exists a natural isomorphism of filtered isocrystals

Dcris,K(V )⊗K0 L0
∼= Dcris,L(V )

where we set Dcris,K(V ) := (V ⊗Qp Bcris)
ΓK and Dcris,L(V ) := (V ⊗Qp Bcris)

ΓL.

(2) V is crystalline if and only if it is crystalline as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately
follows from the first statement. By definition L and L0 are respectively unramified extensions
of K and K0 with the residue field extension l of k. Hence L and L0 are respectively Galois
over K and K0 with Gal(L/K) ∼= Gal(L0/K0). Furthermore, since the construction of Bcris

depends only on CK , we have an identification

Dcris,K(V ) = Dcris,L(V )Gal(L/K) = Dcris,L(V )Gal(L0/K0).

Then by the Galois descent for vector spaces we obtain a natural bijective L0-linear map

Dcris,K(V )⊗K0 L0 −! Dcris,L(V ). (3.12)

This map is evidently compatible with the natural Frobenius automorphisms on both sides
induced by ϕ as explained in Lemma 3.2.5 and Proposition 3.2.7. Moreover, Proposition
2.4.14 and Proposition 3.2.8 together imply that the map (3.12) induces a natural L-linear
isomorphism of filtered vector spaces

(Dcris,K(V )⊗K0 K)⊗K L ∼= Dcris,L(V )⊗L0 L.

We thus deduce that the map (3.12) is an isomorphism of filtered isocrystals over L. �

Remark. Proposition 3.2.20 also holds when L is the completion of the maximal unramified
extension of K. As a consequence, we have the following facts:

(1) Every unramified p-adic representation is crystalline.

(2) For a continuous character η : ΓK −! Z×p , we have Qp(η) ∈ Repcris
Qp (ΓK) if and only

if there exists some n ∈ Z such that ηχn is trivial on IK .
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On the other hand, Example 3.2.9 shows that Proposition 3.2.20 fails when L is a ramified
extension of K. Fontaine interpreted this “failure” as a good feature of the crystalline con-
dition, and conjectured that the crystalline condition should provide a p-adic analogue of the
Néron-Ogg-Shafarevich criterion introduced in Theorem 1.1.1 of Chapter I; more precisely,
Fontaine conjectured that an abelian variety A over K has good reduction if and only if the
rational Tate module Vp(A[p∞]) is crystalline. Fontaine’s conjecture is now known to be true
by the work of Coleman-Iovita and Breuil.

We conclude this section with a discussion of a classical example which is enlightening in
many ways. We assume the following technical result without proof.

Proposition 3.2.21. The continuous map log : Zp(1) −! B+
dR extends to a ΓK-equivariant

homomorphism log : Ainf [1/p]
× −! B+

dR such that log([p[]) is transcendental over the fraction
field of Bcris.

Example 3.2.22. The Tate curve Ep is an elliptic curve over K with Ep(K) ∼= K
×
/pZ where

we set pZ := { pn : n ∈ Z }. We assert that the rational Tate module Vp(Ep[p
∞]) is de Rham

but not crystalline. It is evident by construction that ε and p[ form a basis of Vp(Ep[p
∞])

over Qp. Moreover, for every γ ∈ ΓK we have

γ(ε) = εχ(γ) and γ(p[) = p[εc(γ) (3.13)

for some c(γ) ∈ Zp. Hence Vp(Ep[p
∞]) is an extension of Qp by Qp(1) in RepQp(ΓK), and

thus is de Rham by Example 2.4.5.

We aim to present a basis for DdR(Vp(Ep[p
∞])) = (Vp(Ep[p

∞])⊗Qp BdR)ΓK . By (3.13) we

find ε⊗ t−1 ∈ DdR(Vp(Ep[p
∞])). Let us now consider the homomorphism log : Ainf [1/p]

× −!
B+

dR as in Proposition 3.2.21 and set u := log([p[]). Then for γ ∈ ΓK we find

γ(u) = γ(log([p[]) = log([γ(p[)]) = log([p[εc(γ)]) = log([p[]) + c(γ) log([ε]) = u+ c(γ)t

by (3.13) and Lemma 2.2.20, and consequently obtain

γ(−ε⊗ ut−1 + p[ ⊗ 1) = −εχ(γ) ⊗ (u+ c(γ)t)χ(γ)−1t−1 + p[εc(γ) ⊗ 1

= −ε⊗ (ut−1 + c(γ)) + c(γ) · (ε⊗ 1) + p[ ⊗ 1

= −ε⊗ ut−1 + p[ ⊗ 1

by (3.13) and Theorem 2.2.21. In particular, we have −ε⊗ ut−1 + p[⊗ 1 ∈ DdR(Vp(Ep[p
∞])).

Since the elements ε ⊗ t−1 and −ε ⊗ ut−1 + p[ ⊗ 1 are linearly independent over BdR, they
form a basis for DdR(Vp(Ep[p

∞])) = (Vp(Ep[p
∞])⊗Qp BdR)ΓK .

Let us now consider an arbitrary element x ∈ Dcris(Vp(Ep[p
∞])) = (Vp(Ep[p

∞]) ⊗Qp
Bcris)

ΓK . We may uniquely write x = ε⊗ c+ p[ ⊗ d for some c, d ∈ Bcris. Moreover, since we
have Dcris(Vp(Ep[p

∞])) ⊆ DdR(Vp(Ep[p
∞])) there exist some r, s ∈ K with

x = r · (ε⊗ t−1) + s · (−ε⊗ ut−1 + p[ ⊗ 1) = ε⊗ (r − su)t−1 + p[ ⊗ s.
Then we find c = (r−su)t−1, and consequently obtain s = 0 by Proposition 3.2.21. Therefore
we deduce that every element in Dcris(Vp(Ep[p

∞])) ⊗K0 K is a K-multiple of ε ⊗ t−1. In
particular, we find dimK0 Dcris(Vp(Ep[p

∞])) ≤ 1, thereby concluding that Vp(Ep[p
∞]) is not

crystalline.

Remark. Fontaine constructed the semistable period ring Bst as the Bcris-subalgebra of BdR

generated by log([p[]).



CHAPTER IV

The Fargues-Fontaine curve

1. Construction

Our main objective in this section is to discuss the construction of the Fargues-Fontaine
curve. The primary references are Fargues and Fontaine’s survey paper [FF12] and Lurie’s
notes [Lur]

1.1. Untilts of a perfectoid field

Throughout this chapter, we let F be an algebraically closed perfectoid field F of charac-
teristic p with the valuation νF , and write mF for the maximal ideal of OF . We also denote
by Ainf = W (OF ) the ring of Witt vectors over OF , and by W (F ) the ring of Witt vectors
over F . In addition, for every c ∈ F we write [c] for its Teichmüller lift in W (F ).

Definition 1.1.1. An untilt of F is a perfectoid field C together with a continuous isomor-
phism ι : F ' C[.

Example 1.1.2. The trivial untilt of F is the field F with the natural isomorphism F ∼= F [

given by Corollary 2.1.13 in Chapter III.

Definition 1.1.3. Let C be an untilt of F with a continuous isomorphism ι : F ' C[.
(1) We define the sharp map associated to C as the composition of the maps

F C[ = lim −
x7!xp

C Cι
∼

where the last arrow is the projection to the first component.

(2) For every c ∈ F , we denote its image under the sharp map by c]C , or often by c].

(3) We define the normalized valuation on C to be the unique valuation νC with νF (c) =
νC(c]) for all c ∈ F as given by Proposition 2.1.8 from Chapter III.

Our first goal in this subsection is to prove that every untilt of F is algebraically closed.

Lemma 1.1.4. Let L be a complete nonarchimedean field, and let f(x) be an irreducible
monic polynomial over L with f(0) ∈ OL. Then f(x) is a polynomial over OL.

Proof. Let us choose a valuation νL on L. Take a finite Galois extension L′ of L such
that f(x) factors as

f(x) =
d∏
i=1

(x− ri) with ri ∈ L′.

The valuation νL uniquely extends to a Gal(L′/L)-equivariant valuation νL′ on L′. In par-
ticular, the roots ri all have the same valuation as they belong to the same Gal(L′/L)-orbit.
Since we have f(0) = (−1)dr1r2 · · · rd ∈ OL, we find that each ri has a nonnegative valuation.
Hence each coefficient of f(x) has a nonnegative valuation as well. �
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Proposition 1.1.5. Let C be an untilt of F , and let f(x) be an irreducible monic polynomial
of degree d over C. For every y ∈ C, there exists an element z ∈ C with

νC(y − z) ≥ νC(f(y))/d and νC(f(z)) ≥ νC(p) + νC(f(y)).

Proof. We may replace f(x) by f(x + y) to assume y = 0. Our assertion is that there
exists an element z ∈ C with

νC(z) ≥ νC(f(0))/d and νC(f(z)) ≥ νC(p) + νC(f(0)). (1.1)

If we have f(0) = 0, the assertion is trivial as we can simply take z = 0. We henceforth
assume f(0) 6= 0. Since F is algebraically closed, the multiplication by d is surjective on the
value group of F . Hence Proposition 2.1.11 in Chapter III implies that the multiplication by
d is also surjective on the value group of C. In particular, there exists an element a ∈ C with
dνC(a) = νC(f(0)). Then we can rewrite the inequalities in (1.1) as

νC(z/a) ≥ 0 and νC

(
f(a · (z/a))/ad

)
≥ νC(p).

Therefore we may replace f(x) by the monic polynomial f(a · x)/ad to assume νC(f(0)) = 0.
Then our assertion amounts to the existence of an element z ∈ OC with f(z) ∈ pOC .

Lemma 1.1.4 implies that f(x) is a polynomial over OC . In other words, we may write
f(x) = xd + a1x

d−1 + · · · + ad with ai ∈ OC . Then by Lemma 2.1.10 in Chapter III we

find elements ci ∈ OF with ai − c]i ∈ pOC . Since F is algebraically closed, the polynomial

g(x) := xd + c1x
d−1 + · · ·+ cd over OF has a root α in OF . Now we find

f(α]) = (α])d + a1(α])d−1 + · · ·+ ad

= (α])d + c]1(α])d−1 + · · ·+ c]d mod pOC

= (αd + c1α
d−1 + · · ·+ cd)

]
mod pOC

= g(α)] = 0

where the third identity follows from Proposition 2.1.9 in Chapter III. Hence we complete the
proof by taking z = α]. �

Proposition 1.1.6. Every untilt of F is algebraically closed.

Proof. Let C be an untilt of F , and let f(x) an arbitrary monic irreducible polynomial
of degree d over C. We wish to show that f(x) has a root in C. We may replace f(x) by
pndf(x/pn) for sufficiently large n to assume that f(x) is a polynomial over OC . Let us set
y0 := 0 so that we have νC(f(y0)) = νC(f(0)) ≥ 0. By Proposition 1.1.5 we can inductively
construct a sequence (yn) in C with

νC(yn−1 − yn) ≥ (n− 1)νC(p)/d and νC(f(yn)) ≥ nνC(p) for each n ≥ 1.

Then the sequence (yn) is Cauchy by construction, and thus converges to an element y ∈ C.
Hence we find

f(y) = f
(

lim
n!∞

yn

)
= lim

n!∞
f(yn) = 0,

thereby deducing the desired assertion. �

Remark. In order to avoid a circular reasoning, we should not deduce Proposition 1.1.6 as
a special case of the tilting equivalence for perfectoid fields as stated in Chapter I, Theorem
2.2.3. In fact, the only known proof of the tilting equivalence (due to Scholze) is based on
Proposition 1.1.6.

Corollary 1.1.7. For every untilt C of F , the associated sharp map is surjective.
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We now aim to parametrize all untilts of F by certain principal ideals of Ainf .

Definition 1.1.8. Let C1 and C2 be untilts of F with continuous isomorphisms ι1 : F ' C[1
and ι2 : F ' C[2. We say that C1 and C2 are equivalent if there exists a continuous isomorphism

C1 ' C2 such that the induced isomorphism C[1 ' C[2 fits into the commutative diagram

C[1 C[2

F

∼

∼
ι1

∼
ι2

.

Example 1.1.9. Corollary 2.1.13 in Chapter III implies that the trivial untilt of F represents
a unique equivalence class of characteristic p untilts of F .

Proposition 1.1.10. Let C be a perfectoid field.

(1) Every continuous isomorphism F ' C[ induces an isomorphism OF /$OF ' OC/pOC
for some $ ∈ mF .

(2) Every isomorphism OF /$OF ' OC/pOC for some $ ∈ mF uniquely lifts to a

continuous isomorphism F ' C[.

Proof. Let us first consider the statement (1). We regard C as an untilt of F with the

given continuous isomorphism F ' C[. Then Proposition 2.1.11 in Chapter III yields an
element $ ∈ F with νF ($) = νC(p) > 0. Moreover, the continuous isomorphism F ' C[

restricts to an isomorphism of valuation rings OF ' OC[ . Let us now consider the map

OF OC OC/pOCc 7!c]

where the second arrow is the natural projection. This map is a ring homomorphism as
noted in Chapter III, Proposition 2.1.9, and is surjective by Lemma 2.1.10 in Chapter III.
In addition, the kernel consists precisely of the elements c ∈ OF with νC(c]) ≥ νC(p), or
equivalently νF (c) ≥ νF ($). Hence we have an induced isomorphism OF /$OF ' OC/pOC
as asserted.

It remains to prove the statement (2). Since F is isomorphic to its tilt as noted in
Example 1.1.9, we have an identification OF ∼= OF [ = lim −

x 7!xp
OF . Hence every isomorphism

OF /$OF ' OC/pOC for some $ ∈ mF uniquely gives rise to an isomorphism

OF ∼= lim −
x 7!xp

OF /$OF ' lim −
x 7!xp

OC/pOC ∼= OC[

where the first and the third isomorphisms are given by Proposition 2.1.7 in Chapter III, and
in turn lifts to a continuous isomorphism F ' C[. �

Definition 1.1.11. We say that an element ξ ∈ Ainf is primitive (of degree 1) if it has the
form ξ = [$]− up for some $ ∈ mF and u ∈ A×inf . We say that a primitive element of Ainf is
nondegenerate if it is not divisible by p.

Proposition 1.1.12. Let ξ be an element in Ainf with the Teichmüler expansion ξ =
∑

[cn]pn.

(1) The element ξ is primitive if and only if we have νF (c0) > 0 and νF (c1) = 0.

(2) If ξ is primitive, every unit multiple of ξ in Ainf is primitive.

Proof. The first statement is straightforward to verify by writing ξ = [c0]+p
∑

[c
1/p
n+1]pn.

The second statement then follows by the explicit multiplication rule for Ainf . �
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Proposition 1.1.13. Let ξ be a nondegenerate primitive element in Ainf . The ring Ainf/ξAinf

is p-torsion free and p-adically complete.

Proof. We first verify that Ainf/ξAinf is p-torsion free. Consider an element a ∈ Ainf

such that pa is divisible by ξ. We wish to show that a is divisible by ξ. Let us write pa = ξb
for some b ∈ Ainf . Then we have b ∈ pAinf since ξ has a nonzero image in Ainf/pAinf

∼= OF .
Therefore we may write b = pb′ for some b′ ∈ Ainf and obtain an identity pa = pξb′, which in
turn yields a = ξb′ as desired.

Let us now prove that Ainf/ξAinf is p-adically complete. Denote by ̂Ainf/ξAinf the p-adic
completion of Ainf/ξAinf . Since Ainf is p-adically complete, the projection Ainf � Ainf/ξAinf

induces a surjective ring homomorphism

Ainf � ̂Ainf/ξAinf (1.2)

by a general fact as stated in [Sta, Tag 0315]. It suffices to show that the kernel of this map
is ξAinf . Under the identification

̂Ainf/ξAinf = lim −
n

(Ainf/ξAinf)/((p
nAinf + ξAinf)/ξAinf) ∼= lim −

n

Ainf/(p
nAinf + ξAinf)

the map (1.2) coincides with the natural map

Ainf � lim −
n

Ainf/(p
nAinf + ξAinf).

The kernel of this map is
∞⋂
n=1

(pnAinf +ξAinf), which clearly contains ξAinf . Hence we only need

to show

∞⋂
n=1

(pnAinf + ξAinf) ⊆ ξAinf . Consider an arbitrary element u ∈
∞⋂
n=1

(pnAinf + ξAinf).

Let us choose sequences (an) and (bn) in Ainf with u = pnan + ξbn for each n ≥ 1. Then
we have pn(an − pan+1) = ξ(bn+1 − bn) for every n ≥ 1. Since ξ has a nonzero image in
Ainf/pAinf

∼= OF , each bn+1 − bn must be divisible by pn. Hence the sequence (bn) converges
to an element b ∈ Ainf by the p-adic completeness of Ainf . As a result we find

u = lim
n!∞

(pnan + ξbn) = lim
n!∞

pnan + ξ lim
n!∞

bn = ξb,

thereby completing the proof. �

Definition 1.1.14. For every primitive element ξ ∈ Ainf , we refer to the natural projection
θξ : Ainf � Ainf/ξAinf as the untilt map associated to ξ.

Lemma 1.1.15. Let ξ be a nondegenerate primitive element in Ainf .

(1) For every nonzero c ∈ OF , some power of p is divisible by θξ([c]) in Ainf/ξAinf .

(2) For every m ∈ mF , some power of θξ([m]) is divisible by p in Ainf/ξAinf .

Proof. Let us write ξ = [$] − pu for some $ ∈ mF and u ∈ A×inf . For every nonzero

c ∈ OF we may write $i = cc′ for some i > 0 and c′ ∈ OF , and consequently find

pi =
(
θξ(u

−1)θξ(up)
)i

= θξ(u)−iθξ([$])i = θξ(u)−iθξ([c])θξ([c
′]).

Similarly, for every m ∈ mF we may write mj = $ · b for some j > 0 and b ∈ OF , and
consequently find

θξ([m])j = θξ([$])θξ([b]) = θξ(pu)θξ([b]) = pθξ(u)θξ([b]).

We thus deduce the desired assertions. �

https://stacks.math.columbia.edu/tag/0315
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Proposition 1.1.16. Let ξ be a nondegenerate primitive element in Ainf . Take arbitrary
elements c, c′ ∈ OF . Then c divides c′ in OF if and only if θξ([c]) divides θξ([c

′]) in Ainf/ξAinf .

Proof. If c divides c′ in OF , then θξ([c]) divides θξ([c
′]) in Ainf/ξAinf by the multiplica-

tivity of the Teichmüller lift and the map θξ. Let us now assume that c does not divide
c′ in OF . We wish to show that θξ([c]) does not divide θξ([c

′]) in Ainf/ξAinf . Suppose for
contradiction that there exists an element a ∈ Ainf/ξAinf with θξ([c

′]) = θξ([c])a. Since we
have νF (c) > νF (c′) by assumption, there exists some m ∈ mF with c = mc′. We thus find

θξ([c
′]) = θξ([c])a = θξ([c

′])θξ([m])a. (1.3)

Moreover, c′ is not zero as it is not divisible by c. Hence by Lemma 1.1.15 we may write
pn = θξ([c

′])b for some n > 0 and b ∈ Ainf/ξAinf . Then by (1.3) we find pn = pnθξ([m])a,
which in turn yields θξ([m])a = 1 since p is not a zero divisor in Ainf/ξAinf by Proposition
1.1.13. However, this is impossible because the image of θξ([m]) under the natural map
Ainf/ξAinf � Ainf/(ξAinf + pAinf) is nilpotent by Lemma 1.1.15. �

Proposition 1.1.17. Let ξ be a nondegenerate primitive element in Ainf . Every a ∈ Ainf/ξAinf

is a unit multiple of θξ([c]) for some c ∈ OF , which is uniquely determined up to unit multiple.

Proof. Let us first assume that a is a unit multiple of θξ([c1]) and θξ([c2]) for some
c1, c2 ∈ OF . Then θξ([c1]) and θξ([c2]) divide each other. Hence Proposition 1.1.16 implies
that c1 and c2 divide each other, which means that c1 and c2 are unit multiples of each other.

It remains to show that a is a unit multiple of θξ([c]) for some c ∈ OF . We may assume
a 6= 0 as the assertion is obvious for a = 0. By Proposition 1.1.13 we can write a = pna′ for
some n ≥ 0 and a′ ∈ Ainf/ξAinf such that a′ is not divisible by p. Let us write ξ = [$]− up
for some $ ∈ mF and u ∈ A×inf . Then we have

a = pna′ =
(
θξ(u

−1)θξ(up)
)n
a′ = θξ(u)−1θξ([$])na′.

Hence we may replace a by a′ to assume that a is not divisible by p.

We have a natural isomorphism

Ainf/(ξAinf + pAinf) = Ainf/([$]Ainf + pAinf) ∼= OF /$OF .
In addition, the map θξ gives rise to a commutative diagram

Ainf Ainf/ξAinf

OF ∼= Ainf/pAinf Ainf/(ξAinf + pAinf) OF /$OF

θξ

∼=

(1.4)

where the surjectivity of the bottom middle arrow follows from the surjectivity of the other
arrows. Choose an element c ∈ OF whose image under the bottom middle arrow coincides
with the image of a under the second vertical arrow. Then c is not divisible by $ since a is
not divisible by p. Therefore we may write $ = cm for some m ∈ mF and obtain

p = θξ(u
−1)θξ(up) = θξ(u)−1θξ([$]) = θξ(u)−1θξ([c])θξ([m]).

Now the diagram (1.4) yields an element b ∈ Ainf/ξAinf with

a = θξ([c]) + pb = θξ([c]) + bθξ(u)−1θξ([c])θξ([m]) = θξ([c])
(
1 + bθξ(u)−1θξ([m])

)
.

We thus complete the proof by observing that 1 + bθξ(u)−1θξ([m]) is a unit in Ainf/ξAinf with(
1 + bθξ(u)−1θξ([m])

)−1
= 1−

(
bθξ(u)−1θξ([m])

)
+
(
bθξ(u)−1θξ([m])

)2 − · · ·
where the infinite sum converges by Proposition 1.1.13 and Lemma 1.1.15. �
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Proposition 1.1.18. Let ξ be a primitive element in Ainf , and let Cξ denote the fraction
field of Ainf/ξAinf . Then Cξ is an untilt of F with the valuation ring OCξ = Ainf/ξAinf and a

continuous isomorphism ι : F ' C[ξ induced by the canonical isomorphism

OF /$OF ∼= Ainf/([$]Ainf + pAinf) = Ainf/(ξAinf + pAinf) ∼= OCξ/pCξ. (1.5)

where $ denotes the image of ξ under the natural map Ainf � Ainf/pAinf
∼= OF . Moreover,

each element c ∈ OF maps to θξ([c]) under the sharp map associated to Cξ.

Proof. Let us write ξ = [$]− up with $ ∈ mF and u ∈ A×inf . We also let O denote the
ring Ainf/ξAinf . If $ is zero, then we have a natural isomorphism

O = Ainf/ξAinf
∼= Ainf/pAinf

∼= OF
which implies that Cξ represents the trivial untilt of F as noted in Example 1.1.9. We
henceforth assume $ 6= 0.

We assert that O = Ainf/ξAinf is an integral domain. Suppose for contradiction that there
exist nonzero elements a, b ∈ O with ab = 0. By Proposition 1.1.17 we may write a = θξ([c])u
for some nonzero c ∈ OF and u ∈ O×. In addition, by Lemma 1.1.15 we have θξ([c])w = pn

for some n > 0 and w ∈ O. Therefore we obtain an identity

0 = abw = θξ([c])wub = pnub,

which yields a desired contradiction by Proposition 1.1.13.

By Proposition 1.1.17 we can define a nonnegative real-valued function ν on O× which
maps each y ∈ O× to νF (z) where z is an element in OF such that y is a unit multiple of
θξ([z]). Then by construction ν is a multiplicative homomorphism whose image contains the
image of νF . In addition, for any y1, y2 ∈ O× with ν(y1) ≥ ν(y2) we find by Proposition
1.1.16 that y1 is divisible y2 in O, and consequently obtain

ν(y1 + y2) = ν((y1/y2 + 1)y2) = ν(y1/y2 + 1) + ν(y2) ≥ ν(y2) = min(ν(y1), ν(y2)).

Therefore we deduce that ν is a nondiscrete valuation on O.

We can uniquely extend ν to a valuation on Cξ, which we also denote by ν. For every
x ∈ Cξ we write x = y1/y2 for some y1, y2 ∈ O and find by Proposition 1.1.16 that ν(x) =
ν(y1)− ν(y2) is nonnegative if and only if y1 is divisible by y2 in O. Hence we deduce that O
is indeed the valuation ring of Cξ.

Since the p-th power map is surjective on OF /$OF , it is also surjective on OCξ/pOCξ by
the isomorphism (1.5). In addition, from the identity

p = θξ(u
−1)θξ(up) = θξ(u)−1θξ([$])

we find ν(p) = νF ($) > 0. Hence Cξ has residue characteristic p. Furthermore, Proposition
1.1.13 implies that Cξ is complete with respect to the valuation ν. Therefore we deduce that
Cξ is a perfectoid field.

By Proposition 1.1.10 (and its proof) the isomorphism (1.5) uniquely lifts to an isomor-
phism

OF ∼= lim −
x 7!xp

OF /$OF ∼= lim −
x 7!xp

Ainf/(ξAinf + pAinf) ∼= lim −
x 7!xp

OCξ/pOCξ ∼= lim −
x 7!xp

OCξ = OC[ξ

where the first and the third isomorphisms are given by Proposition 2.1.7 in Chapter III, and
in turn lifts to a continuous isomorphism F ' C[ξ. Moreover, it is straightforward to verify

that each element c ∈ OF maps to (θξ([c
1/pn ]) ∈ OC[ξ under the above isomorphism, and

consequently maps to θξ([c]) under the sharp map associated to Cξ. Therefore we complete
the proof. �
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Proposition 1.1.19. Let C be an untilt of F .

(1) There exists a surjective ring homomorphism θC : Ainf � OC with

θC

(∑
[cn]pn

)
=
∑

c]np
n for every cn ∈ OF .

(2) Every primitive element in ker(θC) generates ker(θC).

Proof. Since C is algebraically closed as noted in Proposition 1.1.6, all results from the
first part of §2.2 in Chapter III remain valid with C in place of CK . In particular, the statement
(1) is merely a restatement of Proposition 2.2.2 in Chapter III. Furthermore, Proposition 2.2.6

in Chapter III implies that ker(θC) is generated by a primitive element ξC := [p[]− p ∈ Ainf

where p[ denotes an element in OF with (p[)
]

= p.

Let us now consider an arbitrary primitive element ξ ∈ ker(θC). The map θC induces a

surjective map θ̃ξ : Ainf/ξAinf � OC . Then ker(θ̃ξ) is a non-maximal prime ideal as OC is

an integral domain but not a field. Moreover, ker(θ̃ξ) is a principal ideal generated by the

image of ξC . Since Ainf/ξ is a valuation ring by Proposition 1.1.18, we find ker(θ̃ξ) = 0 and
consequently deduce that ξ generates ker(θC). �

Remark. In the last sentence, we used an elementary fact that every nonzero principal prime
ideal of a valuation ring is maximal.

Definition 1.1.20. Given an untilt C of F , we refer to the ring homomorphism θC constructed
in Proposition 1.1.19 as the untilt map of C.

Theorem 1.1.21 (Kedlaya-Liu [KL15], Fontaine [Fon13]). There is a bijection

{ equivalence classes of untilts of F } ∼
−! { ideals of Ainf generated by a primitive element }

which maps each untilt C of F to ker(θC).

Proof. We first verify that the association is surjective. Consider an arbitrary primitive
element ξ ∈ Ainf . By Proposition 1.1.18 it gives rise to an untilt Cξ of F such that each
c ∈ OF maps to θξ([c]) under the associated sharp map. Hence Lemma 2.3.1 from Chapter II
implies that the maps θξ and θCξ coincide, thereby yielding ξAinf = ker(θξ) = ker(θCξ).

It remains to show that the association is injective. Let C be an arbitrary untilt of F
with a continuous isomorphism ι : F ' C[. Choose a primitive element ω ∈ ker(θC), which

gives rise to an untilt Cω of F with a continuous isomorphism ιω : F ' C[ω by Proposition
1.1.18. It suffices to show that C and Cω are equivalent. The map θC induces an isomorphism
OCω = Ainf/ωAinf ' OC , which extends to an isomorphism Cω ' C. Let f denote the induced

map C[ω ' C[. Then by Proposition 1.1.10 and Proposition 1.1.18 the map f ◦ ιω yields an
isomorphism

OF /$OF ∼= Ainf/(pAinf + ωAinf) = OCω/pOCω ' OC/pOC (1.6)

where $ denotes the image of ω in Ainf/pAinf
∼= OF . For every c ∈ OF , this isomorphism

maps the image of c in OF /$OF to the image of θC([c]) = c] in OC/pOC . This implies that
an element c ∈ OF is divisible by $ if and only if c] is divisible by p, and consequently yields
νF ($) = νC(p). Then the proof of Proposition 1.1.10 shows that the isomorphism (1.6) is
also induced by ι. Therefore the second part of Proposition 1.1.10 yields f ◦ ιω = ι, which
means that C and Cω are equivalent as desired. �

Remark. The first paragraph of our proof shows that there is no conflict between Definition
1.1.14 and Definition 1.1.20.
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1.2. The schematic Fargues-Fontaine curve

The main goal of this subsection is to describe the construction of the Fargues-Fontaine
curve as a scheme. For the rest of this chapter, we fix a nonzero element $ ∈ mF . We also
denote by YF = Y the set of equivalence classes of characteristic 0 untilts of F .

Definition 1.2.1. Let C be an untilt of F . We define the associated absolute value on C by

|x|C := p−νC(x) for every x ∈ C,
and write |C| := { |x|C : x ∈ C } for the associated absolute value group. If C = F is the
trivial untilt of F , we often drop the subscript to ease the notation.

Remark. Thus far we have been using valuations to describe the topology on valued fields,
because valuations are convenient for topological arguments involving algebraic objects such
as p-adic representations and period rings. From now on, we will use absolute values to
describe the topology on perfectoid fields, because the objects of our interest will be very
much analytic in nature.

Example 1.2.2. Let C be an untilt of F . Theorem 1.1.21 yields a primitive element ξ ∈ Ainf

which generates ker(θC). If we write ξ = [m]− up for some m ∈ mF and u ∈ A×inf , we have

|p|C =
∣∣θC(u)−1θC([m])

∣∣
C

= |θC([m])|C =
∣∣∣m]
∣∣∣
C

= |m| .

Proposition 1.2.3. We have an identification

Ainf [1/p, 1/[$]] =
{∑

[cn]pn ∈W (F )[1/p] : |cn| bounded
}
.

In particular, the ring Ainf [1/p, 1/[$]] does not depend on our choice of $.

Proof. Consider an arbitrary element f =
∑

[cn]pn ∈ W (F )[1/p]. Then we have f ∈
Ainf [1/p, 1/[$]] if and only if there exists some i > 0 with [$i]f =

∑
[cn$

i]pn ∈ Ainf [1/p], or
equivalently |cn| ≤

∣∣$−i∣∣ for all n. �

Definition 1.2.4. Let y be an element of Y , represented by an untilt C of F .

(1) We define the absolute value of y by |y| := |p|C .

(2) For every f =
∑

[cn]pn ∈ Ainf [1/p, 1/[$]], we define its value at y by

f(y) := θ̃C(f) =
∑

c]np
n

where θ̃C : Ainf [1/p, 1/[$]] −! C is the ring homomorphism which extends the untilt
map θC : Ainf � OC .

Remark. A useful heuristic idea for understanding the construction and the structure of the
Fargues-Fontaine curve is that the set Y behaves in many aspects as the punctured unit disk
D∗ := { z ∈ C : 0 < |z| < 1 } in the complex plane. Here we present a couple of analogies
between Y and D∗.

(1) For each y ∈ Y represented by an untilt C of F , its absolute value |y| = |p|C is a real
number between 0 and 1. This is an analogue of the fact that every element z ∈ D∗
has an absolute value between 0 and 1.

(2) Every element in Ainf [1/p, 1/[$]] is a “Laurent series in the variable p” with bounded
coefficients, and gives rise to a function on Y as described in Definition 1.2.4. This
is an analogue of the fact that every Laurent series

∑
anz

n over C with bounded
coefficients defines a holomorphic function on D∗.
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Lemma 1.2.5. Let f =
∑

[cn]pn be a nonzero element in Ainf [1/p, 1/[$]], and let ρ be a real
number with 0 < ρ < 1. Then sup

n∈Z
(|cn| ρn) exists and is attained by finitely many values of n.

Proof. Let us take an integer n0 with cn0 6= 0. Proposition 1.2.3 implies that there
exists an integer l > 0 with |cn| ρn < |cn0 | ρn0 for all n > l. In addition, there exists an integer
k < 0 with cn = 0 for all n < k. Therefore sup

n∈Z
(|cn| ρn) = sup

k<n<l
(|cn| ρn) exists and can only

be attained by an integer n with k < n < l. �

Definition 1.2.6. Let ρ be a real number with 0 < ρ < 1.

(1) We define the Gauss ρ-norm on Ainf [1/p, 1/[$]] by∣∣∣∑[cn]pn
∣∣∣
ρ

:= sup
n∈Z

(|cn| ρn).

(2) Given an element f =
∑

[cn]pn ∈ Ainf [1/p, 1/[$]], we say that ρ is generic for f if
there exists a unique n ∈ Z with |f |ρ = |cn| ρn.

Lemma 1.2.7. Let f be an element in Ainf [1/p, 1/[$]]. The set

Sf := { ρ ∈ (0, 1) : ρ is generic for f }
is dense in the interval (0, 1).

Proof. If ρ ∈ (0, 1) is not generic for f , then by Lemma 1.2.5 there exist some distinct

integers m and n with |f |ρ = |cm| ρm = |cn| ρn, which yields ρ = (|cm| / |cn|)1/(n−m). We thus

deduce that the complement of Sf in (0, 1) is countable, thereby obtaining the assertion. �

Lemma 1.2.8. Let y be an element in Y represented by an untilt C of F . For every f ∈
Ainf [1/p, 1/[$]] we have |f(y)|C ≤ |f ||y| with equality if |y| is generic for f .

Proof. Let us write f =
∑

[cn]pn with cn ∈ F . Then we have

|f(y)|C =
∣∣∣∑ c]np

n
∣∣∣
C
≤ sup

n∈Z

(∣∣∣c]n∣∣∣
C
· |p|nC

)
= sup

n∈Z
(|cn| · |y|n) = |f ||y| .

It is evident that the inequality above becomes an equality if |y| is generic for f . �

Proposition 1.2.9. For every positive real number ρ < 1, the Gauss ρ-norm on Ainf [1/p, 1/[$]]
is a multiplicative norm.

Proof. Let f and g be arbitrary elements in Ainf [1/p, 1/[$]]. We wish to show

|f + g|ρ ≤ max(|f |ρ , |g|ρ) and |fg|ρ = |f |ρ |g|ρ .

Since |F | is dense in the set of nonnegative real numbers, Lemma 1.2.7 implies that the set

S := { τ ∈ (0, 1) ∩ |F | : τ is generic for f, g, f + g, and fg }
is dense in the interval (0, 1). Hence we write ρ = lim

n!∞
τn for some (τn) in S to assume ρ ∈ S.

Take an element c ∈ mF with |c| = ρ. Then ξ := [c]−p ∈ Ainf is a nondegenerate primitive
element, and thus gives rise to an element y ∈ Y with |y| = ρ by Proposition 1.1.13, Theorem
1.1.21, and Example 1.2.2. Then by Lemma 1.2.8 we find

|f + g|ρ = |f(y) + g(y)|C ≤ max(|f(y)|C , |g(y)|C) = max(|f |ρ , |g|ρ),
|fg|ρ = |f(y)g(y)|C = |f(y)|C |g(y)|C = |f |ρ |g|ρ .

Therefore we complete the proof. �
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Definition 1.2.10. Let [a, b] be a closed subinterval of (0, 1). We write

Y[a,b] := { y ∈ Y : a ≤ |y| ≤ b } ,
and define the ring of holomorphic functions on Y[a,b], denoted by B[a,b], to be the completion
of Ainf [1/p, 1/[$]] with respect to the Gauss a-norm and the Gauss b-norm.

Lemma 1.2.11. Let [a, b] be a closed subinterval of (0, 1), and let f be an element in
Ainf [1/p, 1/[$]]. We have |f |ρ ≤ sup(|f |a , |f |b) for all ρ ∈ [a, b].

Proof. Let us write f =
∑

[cn]pn for some cn ∈ F . Then we have

|cn| ρn ≤ |cn| bn ≤ |f |b for all n ≥ 0,

|cn| ρn ≤ |cn| an ≤ |f |a for all n < 0.

Hence we deduce the desired assertion. �

Remark. Since |F | is dense in (0,∞), we find sup
|y|=ρ

(|f(y)|C) = |f |ρ for all ρ ∈ |F | ∩ (0, 1) by

Lemma 1.2.7 and Lemma 1.2.8. Hence we may regard Lemma 1.2.11 as an analogue of the
maximum modulus principle for holomorphic functions on D∗.

Proposition 1.2.12. Let [a, b] be a closed subinterval of (0, 1). The ring B[a,b] is the com-
pletion of Ainf [1/p, 1/[$]] with respect to all Gauss ρ-norms with ρ ∈ [a, b].

Proof. Lemma 1.2.11 implies that a sequence (fn) in Ainf [1/p, 1/[$]] is Cauchy with
respect to the Gauss a-norm and the Gauss b-norm if and only if it is Cauchy with respect to
the Gauss ρ-norm for all ρ ∈ [a, b]. �

Corollary 1.2.13. For any a, b, a′, b′ ∈ R with [a, b] ⊆ [a′, b′] ⊆ (0, 1), we have B[a′,b′] ⊆ B[a,b].

Definition 1.2.14. We define the ring of holomorphic functions on Y by

BF := lim −B[a,b]

where the transition maps are the natural inclusions given by Corollary 1.2.13. We often write
B instead of BF to ease the notation.

Remark. It is not hard to see that a formal sum
∑

[cn]pn with cn ∈ F converges in B if and
only if it satisfies

lim sup
n>0

|cn|1/n ≤ 1 and lim
n!∞

|c−n|1/n = 0.

This is an analogue of the fact that a Laurent series
∑
anz

n over C converges on D∗ if and
only if it satisfies

lim sup
n>0

|an|1/n ≤ 1 and lim
n!∞

|a−n|1/n = 0.

However, an arbitrary element in B may not admit a unique “Laurent series expansion” in p,
whereas every holomorphic function on D∗ admits a unique Laurent series expansion.

Lemma 1.2.15. Let η : R1 −! R2 be a continuous homomorphism of normed rings.

(1) The map η uniquely extends to a continuous ring homomorphism η̂ : R̂1 −! R̂2

where R̂1 and R̂2 respectively denote the completions of R1 and R2.

(2) The homomorphism η̂ is a homeomorphism if η is a homeomorphism.

Proof. This is an immediate consequence of an elementary fact from analysis. �



1. CONSTRUCTION 123

Proposition 1.2.16. Let C be a characteristic 0 untilt of F . The untilt map θC uniquely

extends to a surjective continuous open ring homomorphism θ̂C : B � C.

Proof. The map θC uniquely extends to a surjective ring homomorphism

θ̃C : Ainf [1/p, 1/[$]]� OC [1/p] = C.

Let us set ρ := |p|C . Then θ̃C uniquely extends to a surjective continuous ring homomorphism̂̂
θC : B[ρ,ρ] � C by Lemma 1.2.8 and Lemma 1.2.15. Moreover,

̂̂
θC is open by the open

mapping theorem. Take θ̂C to be the restriction of
̂̂
θC on B. By construction θ̂C is a surjective

continuous open map which extends θ̃C . Since the uniqueness is evident by the continuity, we
deduce the desired assertion. �

Definition 1.2.17. Let y be an element in Y , represented by an untilt C of F .

(1) We refer to the map θ̂C given by Proposition 1.2.16 as the evaluation map at y.

(2) For every f ∈ B, we define its value at y by f(y) := θ̂C(f).

Proposition 1.2.18. The Frobenius automorphism of F uniquely lifts to a continuous auto-
morphism ϕ on B.

Proof. Let ϕ̃F denote the Frobenius automorphism of W (F ). By construction we have

ϕ̃F

(∑
[cn]pn

)
=
∑

[cpn]pn for all cn ∈ F. (1.7)

Then Proposition 1.2.3 implies that ϕ̃F restricts to an automorphism on Ainf [1/p, 1/[$]].
Moreover, by (1.7) we find

|ϕ̃F (f)|ρp = |f |pρ for all f ∈ Ainf [1/p, 1/[$]] and ρ ∈ (0, 1). (1.8)

Consider an arbitrary closed interval [a, b] ⊆ (0, 1), and choose a real number r ∈ [a, b]. By
Lemma 1.2.15 and (1.8) the map ϕ̃F on Ainf [1/p, 1/[$]] uniquely extends to a continuous ring
isomorphism ϕ[r,r] : B[r,r] ' B[rp,rp]. In addition, the identity (1.8) implies that a sequence
(fn) in Ainf [1/p, 1/[$]] is Cauchy with respect to the Gauss a-norm and the Gauss b-norm if
and only if the sequence (ϕ̃F (fn)) is Cauchy with respect to the Gauss ap-norm and the Gauss
bp-norm. Since ϕ̃F is bijective, we deduce that ϕ[r,r] restricts to a continuous ring isomorphism

ϕ[a,b] : B[a,b] ' B[ap,bp] with an inverse given by the restriction of ϕ−1
[r,r] on B[ap,bp]. It is evident

by construction that ϕ[a,b] is an extension of ϕ̃F .

By our discussion in the preceding paragraph, the map ϕ̃F on Ainf [1/p, 1/[$]] extends to
a continuous isomorphism

ϕ : B = lim −B[a,b] ' lim −B[ap,bp] = B.

Moreover, the uniqueness of ϕ is evident by the continuity. Therefore we obtain the desired
assertion. �

Definition 1.2.19. We refer to the map ϕ constructed in Proposition 1.2.18 as the Frobenius
automorphism of B, and define the schematic Fargues-Fontaine curve as the scheme

XF := Proj

⊕
n≥0

Bϕ=pn

 .

We often simply write X instead of XF to ease the notation.
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1.3. The adic Fargues-Fontaine curve

In this subsection, we describe another incarnation of the Fargues-Fontaine curve using
the language of adic spaces developed by Huber in [Hub93] and [Hub94]. Our goal for
this subsection is twofold: introducing a new perspective for the construction of the Fargues-
Fontaine curve, and providing an exposition on some related theories. Our discussion will be
cursory, as we won’t use any results from this section in the subsequent sections.

Definition 1.3.1. Let R be a topological ring.

(1) We say that a subset S of R is bounded if for every open neighborhood U of 0 there
exists an open neighborhood V of 0 with V S ⊆ U .

(2) We say that an element f ∈ R is power-bounded if the set { fn : n ≥ 0 } is bounded,
and denote by R◦ the subring of power-bounded elements in R.

(3) We say that R is a Huber ring if there exists an open subring R0, called a ring of
definition, on which the induced topology is generated by a finitely generated ideal.

(4) If R is a Huber ring, we say that R is uniform if R◦ is a ring of definition.

Example 1.3.2. We present some important examples of uniform Huber rings.

(1) Every ring R with the discrete topology is a uniform Huber ring with R◦ = R, as its
topology is generated by the zero ideal.

(2) Every nonarchimedean field L is a uniform Huber ring with L◦ = OL, as the topology
on OL is generated by the ideal mOL for any m in the maximal ideal.

(3) The ring Ainf is a uniform Huber ring with A◦inf = Ainf and the topology generated
by the ideal pAinf + [$]Ainf .

Definition 1.3.3. A Huber pair is a pair (R,R+) which consists of a Huber ring R and its
open and integrally closed subring R+ ⊆ R◦.
Proposition 1.3.4. For every Huber ring R, the subring R◦ is open and integrally closed.

Definition 1.3.5. Let R be a topological ring.

(1) A map v : R −! T ∪ { 0 } for some totally ordered abelian group T is called a
continuous multiplicative valuation if it satisfies the following properties:

(i) v(0) = 0 and v(1) = 1.

(ii) For all r, s ∈ R we have v(rs) = v(r)v(s) and v(r + s) ≤ max(v(r), v(s)).

(iii) For every τ ∈ T the set { r ∈ R : v(r) < τ } is open in R.

(2) We say that two continuous multiplicative valuations v and w on R are equivalent if
there exists an isomorphism of totally ordered monoids δ : v(R)∪{ 0 } ' w(R)∪{ 0 }
with δ(v(r)) = w(r) for all r ∈ R.

(3) We define the valuation spectrum of R, denoted by Spv(R), to be the set of equiva-
lence classes of continuous multiplicative valuations on R.

(4) Given r ∈ R and x ∈ Spv(R), we define the value of r at x by |r(x)| := v(r) where v
is any representative of x.

Remark. Our terminology in (1) slightly modifies Huber’s original terminology continuous
valuation in order to avoid any potential confusion after extensively using the term valuation
in the additive notation.

Proposition 1.3.6. Let v and w be continuous multiplicative valuations on a topological ring
R. Then v and w are equivalent if and only if for all r, s ∈ R the inequality v(r) ≤ v(s)
amounts to the inequality w(r) ≤ w(s).
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Definition 1.3.7. For a Huber pair (R,R+), we define its adic spectrum by

Spa(R,R+) :=
{
x ∈ Spv(R) : |f(x)| ≤ 1 for all f ∈ R+

}
endowed with the topology generated by subsets of the form

U(f/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| 6= 0

}
for some f, g ∈ R.

Example 1.3.8. We are particularly interested in the set

Y := Spa(Ainf , Ainf)\ { x ∈ Spa(Ainf , Ainf) : |p[$](x)| = 0 } ,
which we call the perfectoid punctured unit disk. Let us describe two types of points on Y.

Let y be an element in Y , represented by an untilt C of F . Consider a nonnegative real
valued function vy on Ainf defined by vy(f) := |f(y)|C = |θC(f)|C for every f ∈ Ainf . It is
evident by construction that vy is a continuous multiplicative valuation on Ainf with vy(f) ≤ 1
for all f ∈ Ainf . In addition, we have vy(p) = |p|C 6= 0 and vy([$]) = |$| 6= 0. Hence vy gives
rise to a point in Y, which we denote by ỹ.

Let ρ be a real number with 0 < ρ < 1. By Proposition 1.2.9 the Gauss ρ-norm on
Ainf [1/p, 1/[$]] restricts to a continuous multiplicative valuation on Ainf with |f |ρ ≤ 1 for all

f ∈ Ainf . In addition, we have |p|ρ = ρ 6= 0 and |[$]|ρ = |$| 6= 0. Hence the Gauss ρ-norm

on Ainf [1/p, 1/[$]] gives rise to a point in Y, which we denote by γρ.

Remark. Interested readers may find some informative illustrations of Spa(Ainf , Ainf) and Y
in Scholze’s Berkeley lectures [SW20, §12].

Definition 1.3.9. Let (R,R+) be a Huber pair. A rational subset of Spa(R,R+) is a subset
of the form

U(T/g) :=
{
x ∈ Spa(R,R+) : |f(x)| ≤ |g(x)| 6= 0 for all f ∈ T

}
for some g ∈ R and some nonempty finite set T ⊆ R such that TR is open in R.

Example 1.3.10. We say that a subset of Y is distinguished if it has the form

Y[|$|i,|$|j ] :=
{
x ∈ Y :

∣∣[$i](x)
∣∣ ≤ |p(x)| ≤

∣∣[$j ](x)
∣∣ }

for some i, j ∈ Z[1/p] with 0 < j ≤ i. Every distinguished subset of Y is a rational subset of
Spa(Ainf , Ainf); indeed, we have an identification

Y[|$|i,|$|j ] =
{
x ∈ Spa(Ainf , Ainf) :

∣∣[$i+j ](x)
∣∣ , ∣∣p2(x)

∣∣ ≤ ∣∣[$j ]p(x)
∣∣ 6= 0

}
= U(T[i,j]/[$

j ]p)

where Ti,j :=
{

[$i+j ], p2
}

generates an open ideal in Ainf . In particular, every distinguished
subset of Y is open in Spa(Ainf , Ainf).

Let us describe some points on each Y[|$|i,|$|j ] in line with our discussion in Example

1.3.8. For an element y ∈ Y , we have ỹ ∈ Y[|$|i,|$|j ] if and only if y is an element of Y[|$|i,|$|j ].

For a real number ρ with 0 < ρ < 1, we have γρ ∈ Y[|$|i,|$|j ] if and only if ρ belongs to the

interval [|$|i , |$|j ].
Remark. We can extend our discussion above by defining the absolute value for an arbitrary
point x ∈ Y. We say that a valuation is of rank 1 if it takes values in the set of positive real
numbers. It is a fact that x admits a unique maximal generization xmax of rank 1. We define
the absolute value of x by

|x| := |$|
log(|p(xmax)|)

log(|[$](xmax)|) .

Let us now consider Y[|$|i,|$|j ] of Y for some i, j ∈ Z[1/p]. Since Y[|$|i,|$|j ] is open in

Spa(Ainf , Ainf) as noted above, the point x lies in Y[|$|i,|$|j ] if and only if xmax does, which

amounts to having |x| ∈ [|$|i , |$|j ].
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Proposition 1.3.11. Let (R,R+) be a Huber pair, and write S := Spa(R,R+). Consider a
rational subset U := U(T/g) for some g ∈ R and some nonempty finite set T ⊆ R such that
TR is open in R.

(1) There exists a map of Huber pairs (R,R+) −! (OS(U),O+
S (U)) for some complete

Huber ring OS(U) with the following properties:

(i) The induced map Spa(OS(U),O+
S (U)) −! S yields a homeomorphism onto U .

(ii) It is universal for maps of Huber pairs (R,R+) −! (Q,Q+) such that the in-
duced map Spa(Q,Q+) −! S factors over U .

(2) If R is uniform such that the topology on R◦ is given by a finitely generated ideal I,
then OS(U) is given by the completion of R[1/g] with respect to the ideal generated
by I and the set T ′ := { f/g : f ∈ T }.

Definition 1.3.12. Let (R,R+) be a Huber pair, and write S := Spa(R,R+). We define the
presheaves OS and O+

S on S by

OS(W) := lim −
U⊆W

U rational

OS(U) and O+
S (W) := lim −

U⊆W
U rational

O+
S (U) for all open W ⊆ S

where OS(U) and O+
S (U) for each rational subset U of S are given by Proposition 1.3.11. We

refer to OS as the structure presheaf of S.

Remark. The ring O+
S (W) is in general not open in OS(W).

Example 1.3.13. Let us write S := Spa(Ainf , Ainf). We assert that Y is an open subset
of S with OS(Y) ∼= B. The set Y is covered by the distinguished subsets; indeed, as both
[$] and p are topologically nilpotent in Ainf , for every x ∈ Y there exist some positive

real numbers i, j ∈ Z[1/p] with
∣∣[$i](x)

∣∣ ≤ |p(x)| and
∣∣p1/j(x)

∣∣ ≤ |[$](x)|, or equivalently∣∣[$i](x)
∣∣ ≤ |p(x)| ≤

∣∣[$j ](x)
∣∣. Since distinguished subsets of Y are (open) rational subsets of

S as noted in Example 1.3.10, we deduce that Y is an open subset of S with

OS(Y) = lim −OS(Y[|$|i,|$|j ]) (1.9)

where the limit is taken over all distinguished subsets of Y.

Consider arbitrary numbers i, j ∈ Z[1/p] with 0 < j ≤ i. In light of (1.9) it suffices to
establish an identification

OS(Y[|$|i,|$|j ])
∼= B[|$|i,|$|j ]. (1.10)

Proposition 1.3.11 and Example 1.3.2 together imply that OS(Y[|$|i,|$|j ]) is the completion of

Ainf [1/p, 1/[$]] with respect to the ideal I generated by the set T :=
{
p, [$], [$i]/p, p/[$j ]

}
.

Moreover, the ideal I is generated by [$i]/p and p/[$j ] as we have p = (p/[$j ]) · [$j ] and
[$] = ([$i]/p)r · pr · (1/[$])s for some positive integers r and s. It is then straightforward to
verify that the I-adic topology on Ainf [1/p, 1/[$]] coincides with the topology induced by the

Gauss |$|i-norm and the Gauss |$|j-norm. Therefore we obtain the identification (1.10) as
desired.

Definition 1.3.14. We say that a Huber pair (R,R+) is sheafy if the structure presheaf on
Spa(R,R+) is a sheaf.

Proposition 1.3.15. Let (R,R+) be a Huber pair, and write S := Spa(R,R+).

(1) For every open W ⊆ S we have

O+
S (W) = { f ∈ OS(W) : |f(x)| ≤ 1 for all x ∈ W } .

(2) The presheaf O+
S is a sheaf if (R,R+) is sheafy.
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Definition 1.3.16. Let R be a Huber ring.

(1) We say that R is Tate if it contains a topologically nilpotent unit.

(2) We say that R is strongly noetherian if for every n ≥ 0 the Tate algebra

R〈u1, · · · , un〉 :=
{∑

ai1,··· ,inu
i1
1 · · ·u

in
n ∈ R[[u1, · · · , un]] : lim ai1,··· ,in = 0

}
is noetherian.

Theorem 1.3.17 (Huber [Hub94]). A Huber pair (R,R+) is sheafy if R is Tate and strongly
noetherian.

Theorem 1.3.18 (Kedlaya [Ked16]). For every closed interval [a, b] ⊆ (0, 1) the topological
ring B[a,b] is a Tate and strongly noetherian Huber ring.

Definition 1.3.19. An adic space is a topological space S together with a sheaf OS of
topological rings and a continuous multiplicative valuation vx on OS,x for each x ∈ S such
that S is locally of the form Spa(R,R+) for some sheafy Huber pair (R,R+).

Example 1.3.20. By Example 1.3.13, Theorem 1.3.17 and Theorem 1.3.18 we deduce that
distinguished subsets of Y are noetherian adic spaces, and in turn find that Y is a locally
noetherian adic space. In addition, for every closed interval [a, b] ⊆ (0, 1) we see that

Y[a,b] :=
⋃

[|$|i,|$|j ]⊆[a,b]

Y[|$|i,|$|j ]

is a locally noetherian adic space with OY[a,b]
(Y[a,b]) = B[a,b].

Proposition 1.3.21. Every morphism of Huber pairs g : (R,R+) −! (Q,Q+) induces a map
of presheaves OS −! g∗OT where we write S := Spa(R,R+) and T := Spa(Q,Q+).

Example 1.3.22. Let φ denote the automorphism of Spa(Ainf , Ainf) induced by the Frobenius
automorphism of Ainf . It is evident by construction that Y is stable under φ. In addition,
by Example 1.3.13 and Proposition 1.3.21 we get an induced automorphism on OY(Y) ∼= B
which is easily seen to coincide with ϕ.

Let us choose c ∈ (1/p, p) ∩Q. For every n ∈ Z, we set

Vn := Y
[|$|1/pn ,|$|c/pn ]

and Wn := Y
[|$|c/pn ,|$|c/pn+1

]
.

Arguing as in Example 1.3.13, we find that Y is covered by such sets. In addition, we have
φ(Vn) = Vn−1 and φ(Wn) = Wn−1 for all n ∈ Z. Therefore the action of φ on Y is properly
discontinuous, and consequently yields the quotient space

X := Y/φZ.
Moreover, X is covered by (the isomorphic images of) V0 and W0, which are noetherian adic
spaces as noted in Example 1.3.20. Hence X is a noetherian adic space with OX (X ) ∼= Bϕ=1.

Definition 1.3.23. We refer to the noetherian adic space X constructed in Example 1.3.22
as the adic Fargues-Fontaine curve.

Theorem 1.3.24 (Kedlaya-Liu [KL15]). There exists a natural morphism of locally ringed
spaces h : X −! X such that the pullback along h induces an equivalence

h∗ : BunX
∼
−! BunX

where BunX and BunX respectively denote the categories of vector bundles on X and X .

Remark. Theorem 1.3.24 is often referred to as “GAGA for the Fargues-Fontaine curve”.
By Theorem 1.3.24, studying the schematic Fargues-Fontaine curve is essentially equivalent
to studying the adic Fargues-Fontaine curve.
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2. Geometric structure

In this section we establish some fundamental geometric properties of the Fargues-Fontaine
curve. Our discussion will show that the Fargues-Fontaine curve is geometrically very akin to
proper curves over Qp. In addition, our discussion will provide a number of new perspectives
towards several constructions from Chapter III. The primary references for this section are
Fargues and Fontaine’s survey paper [FF12] and Lurie’s notes [Lur]

2.1. Legendre-Newton polygons

We begin by introducing a crucial tool for studying the structure of the ring B.

Definition 2.1.1. Let logp denote the real logarithm base p.

(1) Given an element f ∈ B, we define the Legendre-Newton polygon of f as the function
Lf : (0,∞) −! R ∪ {∞ } given by

Lf (s) := − logp

(
|f |p−s

)
for all s ∈ (0,∞).

(2) Given a closed interval [a, b] ⊆ (0, 1) and an element f ∈ B[a,b], we define the
Legendre-Newton [a, b]-polygon of f as the function Lf,[a,b] : [− logp(b),− logp(a)] −!
R ∪ {∞ } given by

Lf,[a,b](s) := − logp

(
|f |p−s

)
for all s ∈ [− logp(b),− logp(a)].

Remark. With notations as in Example 1.3.8, we may write Lf (s) = − logp
(∣∣f(γp−s)

∣∣) for
all f ∈ B and s ∈ (0,∞).

Lemma 2.1.2. Given any elements f, g ∈ Ainf [1/p, 1/[$]], we have

Lfg(s) = Lf (s) + Lg(s) and Lf+g(s) ≥ min(Lf (s),Lg(s)) for all s ∈ (0,∞).

Proof. This is an immediate consequence of Proposition 1.2.9. �

Our main goal in this subsection is to prove that Legendre-Newton polygons are indeed
polygons with decreasing integer slopes.

Definition 2.1.3. Let g be a piecewise linear function defined on an interval I ⊆ R.

(1) We say that g is concave if the slopes are decreasing, and convex if the slopes are
increasing.

(2) We write ∂−g and ∂+g respectively for the left and right derivatives of g.

Example 2.1.4. Let f =
∑

[cn]pn be a nonzero element in Ainf [1/p, 1/[$]]. Its Newton
polygon is defined as the lower convex hull the points (n, νF (cn)) ∈ R2, which we may regard
as a convex piecewise linear function on (0,∞).

Lemma 2.1.5. Given a nonzero element f =
∑

[cn]pn ∈ Ainf [1/p, 1/[$]], we have

Lf (s) = inf
n∈Z

(νF (cn) + ns) for every s ∈ (0,∞).

Proof. This is obvious by definition. �

Remark. By Lemma 2.1.5 it is not hard to verify that Lf coincides with the Legendre
transform of the Newton polygon of f .

Example 2.1.6. Let ξ be a primitive element in Ainf with the Teichmüller expansion ξ =∑
[cn]pn. By Proposition 1.1.12 we have

Lξ(s) = min(νF (c0), νF (c1) + s) = min(νF (c0), s) for all s ∈ (0,∞).
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Proposition 2.1.7. Let f =
∑

[cn] be a nonzero element in Ainf [1/p, 1/[$]].

(1) Lf is a concave piecewise linear function with integer slopes.

(2) For each s ∈ (0,∞), the one-sided derivatives ∂−Lf (s) and ∂+Lf (s) are respectively
given by the minimum and maximum elements of the set

Ts := { n ∈ Z : Lf (s) = νF (cn) + ns } .

Proof. Fix a real number s > 0. Lemma 2.1.5 and Lemma 1.2.5 together imply that
Ts is finite. Let l and r respectively denote the minimum and maximum elements of Ts. By
construction we have

νF (cl) + ls = νF (cr) + rs ≤ νF (cn) + ns for all n ∈ Z (2.1)

where equality holds if and only if n belongs to Ts. It suffices to show that for all sufficiently
small ε > 0 we have

Lf (s+ ε) = Lf (s) + lε and Lf (s− ε) = Lf (s)− rε. (2.2)

Let us consider the first identity in (2.2). Take k < 0 with cn = 0 for all n ≤ k, and set

δ1 := inf
n<l

(
(νF (cn) + ns)− (νF (cl) + ls)

l − n

)
= inf

k<n<l

(
(νF (cn) + ns)− (νF (cl) + ls)

l − n

)
.

Then we have δ1 > 0 as the inequality in (2.1) is strict for all n < l. Let ε be a real number
with 0 < ε < δ1. For every n < l we find ε(l − n) < δ1(l − n) ≤ (νF (cn) + ns)− (νF (cl) + ls)
and consequently obtain

νF (cl) + l(s+ ε) < νF (cn) + n(s+ ε).

In addition, for every n > l we have

νF (cl) + l(s+ ε) ≤ νF (cn) + ns+ lε < νF (cn) + n(s+ ε)

where the first inequality follows from (2.1). Therefore we obtain

Lf (s+ ε) = inf
n∈Z

(νF (cn) + n(s+ ε)) = νF (cl) + l(s+ ε) = Lf (s) + lε.

We now consider the second identity in (2.2). Proposition 1.2.3 implies that there exists
λ ∈ R with νF (cn) > λ for all n ∈ Z. Let us set

u :=
νF (cr)− λ

s/2
+ r and δ2 := inf

r<n<u

(
(νF (cn) + ns)− (νF (cr) + rs)

n− r

)
.

Then we have δ2 > 0 as the inequality in (2.1) is strict for all n > r. Let ε be a real number
with 0 < ε < min(s/2, δ2). For every n > u we find

νF (cr)− νF (cn) < νF (cr)− λ = (u− r)s/2 < (n− r)(s− ε)
and consequently obtain

νF (cr) + r(s− ε) < νF (cn) + n(s− ε).
In addition, we get the same inequality for every n < r by arguing as in the preceding
paragraph. Therefore we deduce

Lf (s− ε) = inf
n∈Z

(νF (cn) + n(s− ε)) = νF (cr) + r(s− ε) = Lf (s)− rε,

thereby completing the proof. �

Remark. In light of the remark after Lemma 2.1.5, we can alternatively deduce Proposition
2.1.7 from a general fact that the Legendre transform of a convex piecewise linear function
with integer breakpoints is a concave piecewise linear function with integer slopes.
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Lemma 2.1.8. Let (fn) be a Cauchy sequence in Ainf [1/p, 1/[$]] with respect to the Gauss
p−s-norm for some s > 0. Assume that (fn) does not converge to 0. Then the sequences
(Lfn(s)), (∂−Lfn(s)), and (∂+Lfn(s)) are all eventually constant.

Proof. The sequence
(
|fn|p−s

)
converges in R. Let us set

a := lim
n!∞

Lfn(s) = − lim
n!∞

logp

(
|fn|p−s

)
,

and take an integer u > 0 with

Lfn−fu(s) = − logp

(
|fn − fu|p−s

)
> 2a and Lfn(s) < 2a for all n ≥ u.

For every n ≥ u, since both Lfu and Lfn−fu are continuous, we may find some δn > 0 with

Lfn−fu(s+ ε) > 2a > Lfu(s+ ε) for all ε ∈ (−δn, δn),

and consequently obtain Lfu(s + ε) = Lfn(s + ε) for all ε ∈ (−δn, δn) by Lemma 2.1.2. This
implies that for every n ≥ u we have

Lfn(s) = Lfu(s), ∂−Lfn(s) = ∂−Lfu(s), ∂+Lfn(s) = ∂+Lfu(s).

Hence we deduce the desired assertion. �

Proposition 2.1.9. Let [a, b] be a closed subinterval of (0, 1), and let (fn) be a Cauchy
sequence in Ainf [1/p, 1/[$]] with respect to the Gauss a-norm and the Gauss b-norm. Assume
that (fn) does not converge to 0 with respect to either the Gauss a-norm or the Gauss b-norm.
Then the sequence of functions (Lfn) is eventually constant on [− logp(b),− logp(a)].

Proof. Let us write l := − logp(b) and r := − logp(a). Without loss of generality we may
assume that each fn is not zero. In addition, by symmetry we may assume that fn does not
converge to 0 with respect to the Gauss b-norm. Then Lemma 2.1.8 yields α, β ∈ R and u ∈ Z
such that we have Lfn(l) = α and ∂+Lfn(l) = β for all n > u. Since each Lfn is concave and
piecewise linear by Proposition 2.1.7, we set ω := max(α, α+ β(r − l)) and find

Lfn(s) ≤ α+ β(s− l) ≤ ω for all n > u and s ∈ [l, r]. (2.3)

Moreover, Lemma 1.2.11 (or Proposition 1.2.12) implies that the sequence (fn) converges
with respect to all Gauss ρ-norms with ρ ∈ [a, b], thereby yielding an integer u′ > u with
|fn − fu′ |ρ < p−ω for all n > u′ and ρ ∈ [a, b], or equivalently

Lfn−fu′ (s) > ω for all n > u′ and s ∈ [l, r].

Hence by Lemma 2.1.2 and (2.3) we find

Lfn(s) = Lfu′ (s) for all n > u′ and s ∈ [l, r].

thereby deducing the desired assertion. �

Proposition 2.1.10. Let [a, b] be a closed subinterval of (0, 1). For every nonzero f ∈ B[a,b],
the function Lf,[a,b] is concave and piecewise linear with integer slopes.

Proof. Take a sequence (fn) in Ainf [1/p, 1/[$]] which converges to f with respect to the
Gauss a-norm and the Gauss b-norm. By Proposition 1.2.12 we have

Lf,[a,b](s) = lim
n!∞

Lfn(s) for all s ∈ [− logp(b),− logp(a)].

Since f is not zero, the assertion follows by Proposition 2.1.7 an Proposition 2.1.9. �
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Remark. For a holomorphic function g on the annulus D∗[a,b] := { z ∈ C : a ≤ |z| ≤ b }, the

Hadamard three-circle theorem asserts that the function Mg : [ln(a), ln(b)] −! R defined by

Mg(r) := ln
(

sup
|z|=er

(|g(z)|)
)

for all r ∈ [ln(a), ln(b)] is convex. In light of the remark after

Lemma 1.2.11 we may consider Proposition 2.1.10 as an analogue of the Hadamard three-circle
theorem.

Corollary 2.1.11. For every nonzero f ∈ B, the Legendre-Newton polygon Lf is a concave
piecewise linear function with integer slopes.

Remark. Corollary 2.1.11 suggests that we can define the Newton polygon of f as the Le-
gendre transform of Lf .

Example 2.1.12. Let f be an invertible element in B. By Lemma 2.1.2 we find

Lf (s) = L1(s)− Lf−1(s) = −Lf−1(s) for all s ∈ (0,∞).

Since both Lf and Lf−1 are concave piecewise linear functions as noted in Corollary 2.1.11,
we deduce that Lf is linear.

Remark. In fact, it is not hard to prove that a nonzero element f ∈ B is invertible if and
only if Lf is linear.

Let us present some important applications of the Legendre-Newton polygons.

Definition 2.1.13. For every n ∈ Z, we refer to the ring Bϕ=pn as the Frobenius eigenspace
of B with eigenvalue pn.

Lemma 2.1.14. Given an element f ∈ B, we have

|ϕ(f)|ρp = |f |pρ and |pf |ρ = ρ |f |ρ for all ρ ∈ (0, 1).

Proof. If f is an element in Ainf [1/p, 1/[$]], the assertion is evident by construction.
The assertion for the general case then follows by continuity. �

Proposition 2.1.15. The Frobenius eigenspace Bϕ=pn is trivial for every n < 0.

Proof. Suppose for contradiction that Bϕ=pn contains a nonzero element f . By Lemma
2.1.14 we have

pLf (s) = Lϕ(f)(ps) = Lpnf (ps) = nps+ Lf (ps) for all s > 0.

Since Lf is a concave piecewise linear function by Corollary 2.1.11, we find

p∂+Lf (s) = np+ p∂+Lf (ps) ≤ np+ p∂+Lf (s) for all s > 0, (2.4)

thereby obtaining a contradiction as desired. �

Remark. A similar argument shows that Lf is linear for every nonzero f ∈ Bϕ=1. In
Proposition 3.1.6 we will build on this fact to prove that Bϕ=1 is naturally isomorphic to Qp.

Proposition 2.1.16. Let [a, b] be a closed subinterval of (0, 1), and let f be a nonzero element
in B[a,b]. Then we have |f |ρ 6= 0 for every ρ ∈ [a, b].

Proof. Proposition 2.1.10 implies that Lf,[a,b](− logp(ρ)) = − logp

(
|f |ρ

)
is finite for

every ρ ∈ [a, b], thereby yielding the desired assertion. �

Corollary 2.1.17. For every closed interval [a, b] ⊆ (0, 1) the ring B[a,b] is an integral domain.

Proof. This is an immediate consequence of Proposition 1.2.9 and Proposition 2.1.16. �
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2.2. Divisors and zeros of functions

In this subsection we define the notion of divisors on Y for elements in B.

Definition 2.2.1. A divisor on Y is a formal sum
∑
y∈Y

ny · y with ny ∈ Z such that for every

closed interval [a, b] ⊆ (0, 1) the set Z[a,b] :=
{
y ∈ Y[a,b] : ny 6= 0

}
is finite.

Remark. Definition 2.2.1 is comparable with the definition of Weil divisors on locally noe-
therian integral schemes as given in [Sta, Tag 0BE2].

Lemma 2.2.2. Let f and g be elements in B. Assume that f is divisible by g in B[a,b] for
every closed interval [a, b] ⊆ (0, 1). Then f is divisible by g in B.

Proof. For every n ≥ 2 we may write f = ghn for some hn ∈ B[1/n,1−1/n]. Then by
Corollary 1.2.13 and Corollary 2.1.17 we find that hn takes a constant value for all n ≥ 2.
Hence we get an element h ∈ B with h = hn for all n ≥ 2, thereby obtaining the desired
assertion. �

Proposition 2.2.3. Let y be an element in Y , represented by an untilt C of F . Every f ∈ B
with f(y) = 0 is divisible by every primitive element ξ ∈ ker(θC).

Proof. Consider an arbitrary closed interval [a, b] ⊆ (0, 1) with y ∈ Y[a,b]. By Lemma
2.2.2 it suffices to prove that f is divisible by ξ inB[a,b]. Take a sequence (fn) in Ainf [1/p, 1/[$]]
which converges to f with respect to the Gauss a-norm and the Gauss b-norm. By Corollary

1.1.7 we may write fn(y) = c]n for some cn ∈ F . Then we have

lim
n!∞

|cn| = lim
n!∞

∣∣∣c]n∣∣∣
C

= lim
n!∞

|fn(y)|C = |f(y)|C = 0,

and consequently find that the sequence ([cn]) converges to 0 with respect to the Gauss a-
norm and the Gauss b-norm. Hence we may replace (fn) by (fn − [cn]) to assume fn(y) = 0
for all n > 0.

Let θ̃C : Ainf [1/p, 1/[$]] −! C be the ring homomorphism which extends the untilt map

θC . Proposition 1.1.19 implies that ξ generates ker(θ̃C). We may thus write fn = ξgn for
some gn ∈ Ainf [1/p, 1/[$]]. Then for every ρ ∈ [a, b] we use Proposition 1.2.9 to find

lim
n!∞

|gn+1 − gn|ρ =
1

|ξ|ρ
· lim
n!∞

|ξ(gn+1 − gn)|ρ =
1

|ξ|ρ
· lim
n!∞

|fn+1 − fn|ρ = 0,

which means that the sequence (gn) is Cauchy with respect to the Gauss ρ-norm. Therefore
the sequence (gn) defines an element g ∈ B[a,b] with f = ξg. �

Remark. By Corollary 1.1.7 we may write p = (p[)
]

for some p[ ∈ mF , which is uniquely

determined up to unit multiple. Then we obtain a primitive element [p[] − p ∈ ker(θC), and

consequently find an expression f = ([p[]− p)g for some g ∈ B by Proposition 2.2.3. This is
an analogue of the fact that a holomorphic function f on D∗ with a zero at z0 ∈ D∗ can be
written in the form f = (z − z0)g for some holomorphic function g on D∗.
Corollary 2.2.4. Let C be a characteristic 0 untilt of F . Every primitive element ξ ∈ ker(θC)

generates ker(θ̂C).

Remark. Let [a, b] be a closed subinterval of (0, 1) with |p|C ∈ [a, b]. By the proof of
Proposition 1.2.16 the untilt map θC extends to a surjective continuous ring homomorphism̂̂
θC : B[a,b] � C. Then we can similarly show that every primitive element ξ ∈ ker(θC)

generates ker(
̂̂
θC).

https://stacks.math.columbia.edu/tag/0BE2
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Proposition 2.2.5. Let C be a characteristic 0 untilt of F , and let θC [1/p] : Ainf [1/p] −! C
be the ring homomorphism which extends the untilt map θC . Then we have

Ainf [1/p] ∩ ker(θ̂C)j = ker(θC [1/p])j for all j ≥ 1.

Proof. The assertion for j = 1 follows by observing that θ̂C restricts to θC [1/p]. Let us

now proceed by induction on j. We only need to show Ainf [1/p] ∩ ker(θ̂C)j ⊆ ker(θC [1/p])j ,

since the reverse containment is obvious by the fact that θ̂C restricts to θC [1/p]. Let a be an

arbitrary element in Ainf [1/p] ∩ ker(θ̂C)j , and choose a primitive element ξ ∈ ker(θC). Then

ξ generates both ker(θ̂C) and ker(θC [1/p]) by Corollary 2.2.4 and Proposition 1.1.19. Hence
we may write a = ξjb for some b ∈ B. In addition, since we have

Ainf [1/p] ∩ ker(θ̂C)j ⊆ Ainf [1/p] ∩ ker(θ̂C)j−1 = ker(θC [1/p])j−1

by the induction hypothesis, there exists some c ∈ Ainf [1/p] with a = ξj−1c. We then find

0 = a− a = ξjb− ξj−1c = ξj−1(ξb− c),

and consequently obtain c = ξb by Corollary 2.1.17. This implies c ∈ Ainf [1/p]∩ ker(θ̂C), and
in turn yields c ∈ ker(θC [1/p]) by the assertion for j = 1 that we have already established.
Therefore we deduce a = ξj−1c ∈ ker(θC [1/p])j as desired. �

Definition 2.2.6. Let y be an element in Y , represented by an untilt C of F . We define the
de Rham local ring at y by

B+
dR(y) := lim −

j

Ainf [1/p]/ ker(θC [1/p])j

where θC [1/p] : Ainf [1/p] −! C is the ring homomorphism which extends the untilt map θC .

Proposition 2.2.7. Let y be an element in Y , represented by an untilt C of F .

(1) The ring B+
dR(y) is a complete discrete valuation ring with C as the residue field.

(2) Every primitive element in ker(θC) is a uniformizer of B+
dR(y).

(3) There exists a natural isomorphism

B+
dR(y) ∼= lim −

j

B/ ker(θ̂C)j .

Proof. Since C is algebraically closed as noted in Proposition 1.1.6, all results from the
first part of §2.2 in Chapter III remain valid with C in place of CK . Hence the statements
(1) and (2) follow from Proposition 2.2.12 in Chapter III and Proposition 1.1.19.

It remains to verify the statement (3). Let θC [1/p] : Ainf [1/p]� C be the surjective ring
homomorphism which extends the untilt map θC , and choose a primitive element ξ ∈ ker(θC).

Then ξ generates both ker(θ̂C) and ker(θC [1/p]) by Corollary 2.2.4 and Proposition 1.1.19.
Hence we get a natural map

B+
dR(y) = lim −

j

Ainf [1/p]/ξ
jAinf [1/p] −! lim −

j

B/ξjB = lim −
j

B/ ker(θ̂C)j (2.5)

which is easily seen to be injective by Proposition 2.2.5. Moreover, since we have

Ainf [1/p]/ξAinf [1/p] ∼= C ∼= B/ξB,

the map (2.5) is surjective by a general fact as stated in [Sta, Tag 0315]. We thus deduce
that the natural map (2.5) is an isomorphism, thereby completing the proof. �

https://stacks.math.columbia.edu/tag/0315
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Definition 2.2.8. Let f be a nonzero element in B. We define its order of vanishing at
y ∈ Y to be its valuation in B+

dR(y), denoted by ordy(f).

Remark. The element y gives rise to a point ỹ ∈ Y as described in Example 1.3.8. With
Proposition 2.2.7 and our discussion in §1.3 we can show that B+

dR(y) is the completed local
ring at ỹ. In this sense, Definition 2.2.8 agrees with the usual definition for order of vanishing.

Example 2.2.9. Let ξ be a nondegenerate primitive element in Ainf . Theorem 1.1.21 implies
that ξ vanishes at a unique element yξ ∈ Y . Then we have

ordy(ξ) =

{
1 for y = yξ,

0 for y 6= yξ.

Lemma 2.2.10. Let f and g be nonzero elements in B. Then we have

ordy(fg) = ordy(f) + ordy(g) for all y ∈ Y.

Proof. This is evident by definition. �

Proposition 2.2.11. Let f be a nonzero element in B. For every closed interval [a, b] ⊆ (0, 1),
the set Z[a,b] :=

{
y ∈ Y[a,b] : ordy(f) 6= 0

}
is finite.

Proof. Let us write l := − logp(b) and r := − logp(a). We also set n := ∂−Lf (l) −
∂+Lf (r), which is a nonnegative integer by Corollary 2.1.11. Since we have ordy(f) ≥ 0 for
all y ∈ Y , it suffices to show ∑

y∈Z[a,b]

ordy(f) ≤ n. (2.6)

Suppose for contradiction that this inequality fails. By Proposition 2.2.3, Example 2.2.9 and
Lemma 2.2.10 we may write

f = ξ1ξ2 · · · ξn+1g (2.7)

for some g ∈ B and primitive elements ξ1, · · · , ξn+1 ∈ Ainf such that each ξi vanishes at a
unique element yi ∈ Y[a,b]. Then Example 1.2.2 and Example 2.1.6 together imply that for
each i = 1, · · · , n+ 1 we have

Lξi(s) =

{
s for s ≤ − logp(|yi|),
− logp(|yi|) for s > − logp(|yi|).

Hence we obtain

∂−Lξi(l)− ∂+Lξi(r) = 1− 0 = 1 for each i = 1, · · · , n+ 1.

In addition, by Corollary 2.1.11 we have ∂−Lf (l) − ∂+Lf (r) ≥ 0. Therefore we use Lemma
2.1.2 and (2.7) to find

n = ∂−Lf (l)− ∂+Lf (r)

=

n+1∑
i=1

(∂−Lξi(l)− ∂+Lξi(r)) + (∂−Lg(l)− ∂+Lg(r))

≥ n+ 1,

thereby obtaining a contradiction as desired. �

Remark. It turns out that the inequality (2.6) is indeed an equality.

Definition 2.2.12. For every f ∈ B, we define its associated divisor on Y by

Div(f) :=
∑
y∈Y

ordy(f) · y.



2. GEOMETRIC STRUCTURE 135

2.3. The logarithm and untilts

In this subsection, we define and study the logarithms of elements in the multiplicative
group 1 + mF . For the rest of this section we write m∗F := mF \ { 0 }.

Proposition 2.3.1. There exists a group homomorphism log : 1 + mF −! Bϕ=p with

log(ε) :=
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
for every ε ∈ 1 + mF . (2.8)

Proof. Given arbitrary ε ∈ 1 + mF and ρ ∈ (0, 1), we write [ε] − 1 =
∑

[cn]pn with
cn ∈ OF to find

|[ε]− 1|ρ ≤ max(|c0| , ρ) = max(|ε− 1| , ρ) < 1.

Hence we obtain a map log : 1 +mF −! B satisfying (2.8). It then follows that log is a group
homomorphism by the identity of formal power series log(xy) = log(x)+log(y). Furthermore,
as ϕ is continuous by construction, for every ε ∈ 1 + mF we find

ϕ(log(ε)) =

∞∑
n=1

(−1)n+1 (ϕ([ε])− 1)n

n
=

∞∑
n=1

(−1)n+1 ([εp]− 1)n

n
= log(εp) = p log(ε),

thereby completing the proof. �

Remark. We will see in Proposition 3.1.8 that log is a Qp-linear isomorphism.

Definition 2.3.2. We refer to the map log : 1 + mF −! Bϕ=p constructed in Proposition
2.3.1 as the logarithm on 1 + mF .

Proposition 2.3.3. Let C be a characteristic 0 untilt of F , and let mC denote the maximal
ideal of OC . There exists a commutative diagram

1 + mF Bϕ=p

1 + mC C

log

ε7!ε] θ̂C

logµp∞

(2.9)

where all maps are group homomorphisms.

Proof. Let c be an arbitrary element in OF . By Proposition 2.1.9 in Chapter III, there

exists some a ∈ OC with c] − 1 = (c− 1)] + pa. If c belongs to 1 + mF , then we have∣∣∣c] − 1
∣∣∣
C
≤ max

(∣∣∣(c− 1)]
∣∣∣
C
, |pa|C

)
= max(|c− 1| , |pa|C) < 1

and in turn obtain c] ∈ 1 + mC . Conversely, if c] belongs to 1 + mC , then we have

|c− 1| =
∣∣∣(c− 1)]

∣∣∣
C
≤ max

(∣∣∣c] − 1
∣∣∣
C
, pa
)
< 1

and consequently obtain c ∈ 1 + mF . Therefore in light of Corollary 1.1.7 we deduce that
1 + mF maps onto 1 + mC under the sharp map.

Since the map θ̂C is continuous by construction, for every ε ∈ 1 + mF we have

θ̂C(log(ε)) =
∞∑
n=1

(−1)n+1 (θ̂C([ε])− 1)n

n
=
∞∑
n=1

(−1)n+1 (ε] − 1)n

n
= logµp∞ (ε])

where the last identity follows by Example 3.3.5 in Chapter II. Moreover, as C is algebraically
closed by Proposition 1.1.6, the map logµp∞ is a surjective homomorphism by Proposition 3.3.6

in Chapter II. Therefore we obtain the commutative diagram (2.9) as desired. �
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Proposition 2.3.4. For every ε ∈ 1 + m∗F , the element

ξε :=
[ε]− 1

[ε1/p]− 1
= 1 + [ε1/p] + · · ·+ [ε(p−1)/p] ∈ Ainf

is a nondegenerate primitive element which divides [ε]− 1 but not [ε1/p]− 1.

Proof. Let us write k := OF /mF for the residue field of F , and W (k) for the ring of
Witt vectors over k. In addition, for every c ∈ OF we denote by c its image under the natural
map OF � k, and by [c] the Teichmüller lift of c in W (k). Lemma 2.3.1 from Chapter II
yields a homomorphism π : Ainf −!W (k) with

π
(∑

[cn]pn
)

=
∑

[cn]pn for all cn ∈ OF .

We then find π(ξε) = p by observing ε1/p = ε1/p = 1, and consequently obtain a Teichmüller
expansion

ξε = [m0] + [m1 + 1]p+
∑
n≥2

[mn]pn with mn ∈ mF .

Since we have |m0| < 1 and |m1 + 1| = 1, we deduce by Proposition 1.1.12 that ξε is a
primitive element in Ainf . Moreover, ξε is nondegenerate as we have

m0 = 1 + ε1/p + · · ·+ ε(p−1)/p =
ε− 1

ε1/p − 1
6= 0.

It is also evident that ξε divides [ε] − 1. On the other hand, ξε does not divide [ε1/p] − 1,

since otherwise ξε = 1 + [ε1/p] + · · · + [ε(p−1)/p] should divide p, yielding a contradiction by
Proposition 1.1.13. �

Proposition 2.3.5. For every ε ∈ 1 + m∗F , there exists some yε ∈ Y with ordyε(log(ε)) = 1.

Proof. Proposition 2.3.4 allows us to write [ε]−1 = ξε([ε
1/p]−1) for some nondegenerate

primitive element ξε ∈ Ainf which does not divide [ε1/p] − 1. Then by Example 2.2.9 and
Lemma 2.2.10 we find an element yε ∈ Y with ordyε([ε]− 1) = 1. This means that the image
of [ε]− 1 in B+

dR(yε) is a uniformizer. The assertion then follows from the fact that log(ε) is
divisible by [ε]− 1 but not by ([ε]− 1)2. �

Proposition 2.3.6. There exists a bijection Y
∼
−! (1 +m∗F )/Z×p which maps the equivalence

class of an untilt C of F to the Z×p -orbit of elements εC ∈ 1+m∗F with ε]C = 1 and (ε
1/p
C )

]
6= 1.

Proof. Let y be an arbitrary element in Y , represented by an untilt C of F . Choosing

an element εC ∈ 1 + m∗F with ε]C = 1 and (ε
1/p
C )

]
6= 1 amounts to choosing a system of

primitive p-power roots of unity in C[ ' F . Such a system exists uniquely up to Z×p -multiple
by Proposition 1.1.6.

Let us now consider an arbitrary element ε ∈ 1 + m∗F . Proposition 2.3.4 yields a nonde-

generate primitive element ξε ∈ Ainf which divides [ε]−1 but not [ε1/p]−1. Then by Theorem

1.1.21 we get an untilt Cε of F with ε] = 1 and (ε1/p)
] 6= 1. Moreover, for every untilt C of

F with ε] = 1 and (ε1/p)
] 6= 1, we have

0 =
ε] − 1

(ε1/p)
] − 1

=
θC([ε]− 1)

θC([ε1/p]− 1)
= θC(ξε)

and consequently find by Proposition 1.1.19 and Theorem 1.1.21 that C and Cε are equivalent.
Therefore we deduce that ε is the image of a unique element in Y . �
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Definition 2.3.7. Let ϕF denote the Frobenius automorphism of F .

(1) Given an untilt C of F with a continuous isomorphism ι : C[ ' F , we define its
Frobenius twist φ(C) as the perfectoid field C with the isomorphism ϕnF ◦ ι.

(2) We define the Frobenius action on Y as the map φ : Y ! Y induced by Frobenius
twists.

Lemma 2.3.8. For every characteristic 0 untilt C of F we have θ̂φ(C) = θ̂C ◦ ϕ

Proof. The identity is evident on Ainf [1/p, 1/[$]] by construction. The assertion then
follows by continuity. �

Remark. In Example 1.3.22 we described the Frobenius action φ on Y. By Lemma 2.3.8 it
is straightforward to check that the map Y −! Y given by Example 1.3.8 is compatible with
the Frobenius actions on Y and Y.

Proposition 2.3.9. Let f be a nonzero element in Bϕ=pn for some n ≥ 0. Then we have
ordy(f) = ordφ(y)(f) for all y ∈ Y .

Proof. Let C be an untilt of F which represents y. By corollary 2.2.4 there exists a

primitive element ξ which generates ker(θ̂C). It is then straightforward to check by Proposition

1.1.12 that ϕ(ξ) is a primitive element in Ainf . Moreover, we have ϕ(ξ) ∈ ker(θ̂φ(C)) by Lemma
2.3.8. Let us write i := ordy(f) and j := ordφ(y)(f). By Proposition 2.2.7 we may write

f = ξig = ϕ(ξ)jh with g, h ∈ B.
Then we have f = p−nϕ(f) = ϕ(ξ)i · p−ng and consequently find i ≤ j. Similarly, we have
f = ϕ−1(ϕ(f)) = pnϕ−1(f) = ξj ·pnh and consequently find i ≥ j. Therefore we deduce i = j
as desired. �

Proposition 2.3.10. For every ε ∈ 1 + m∗F , there exists some yε ∈ Y with

Div(log(ε)) =
∑
n∈Z

φn(yε).

Proof. Proposition 2.3.6 yields an untilt Cε of F with ε]Cε = 1 and (ε1/p)
]Cε 6= 1. Let

yε ∈ Y be the equivalence class of Cε. Consider an arbitrary element y ∈ Y , represented by
an untilt C of F . We know by Proposition 3.3.6 in Chapter II that ker(logµp∞ ) is the torsion

subgroup of 1 + mC where mC denotes the maximal ideal of OC . Since we have ε 6= 1 by
assumption, Proposition 2.3.3 implies that log(ε) vanishes at y if and only if there exists some

n ∈ Z with (εp
n
)
]C = 1 and (εp

n−1
)
]C 6= 1, or equivalently (ϕnF (ε))]C = 1 and

(
ϕn−1
F (ε)

)]C 6= 1
where ϕF denotes the Frobenius automorphism of F . Hence by Proposition 2.3.6 we deduce
that log(ε) vanishes at y if and only if there exists some n ∈ Z with y = φn(yε). Since we
have log(ε) ∈ Bϕ=p, the assertion follows by Proposition 2.3.5 and Proposition 2.3.9. �

Proposition 2.3.11. There exists a natural bijection (1 + m∗F )/Q×p
∼
−! Y/φZ which maps

the Q×p -orbit of an element ε ∈ 1 + m∗F to the set of elements in Y at which log(ε) vanishes.

Proof. Lemma 2.3.8 implies that the Frobenius action φ on Y corresponds to the multi-
plication by 1/p on (1+m∗F )/Z×p under the bijection Y

∼
−! (1+m∗F )/Z×p given by Proposition

2.3.6. Hence we obtain a natural bijection (1 + m∗F )/Q×p
∼
−! Y/φZ. Let us now consider

an arbitrary element ε ∈ 1 + m∗F . Its Q×p -orbit maps to the φ-orbit of an element y ∈ Y

with a representative C that satisfies ε] = 1. Then we find θ̂C(log(ε)) = logµp∞ (ε]) = 0 by

Proposition 2.3.3, and consequently deduce the desired assertion by Proposition 2.3.10. �
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2.4. Points and regularity

In this subsection, we prove that the Fargues-Fontaine curve is a Dedekind scheme whose
closed points classify the Frobenius orbits in Y . For the rest of this chapter, let us write
P :=

⊕
Bϕ=pn and denote by |X| the set of closed points in X. We also invoke the following

technical result without proof.

Proposition 2.4.1. Let f and g be elements in B. Then f is divisible by g in B if and only
if we have ordy(f) ≥ ordy(g) for all y ∈ Y .

Remark. This is one of the most difficult results from the original work of Fargues and
Fontaine [FF18]. Curious readers can find a complete proof in [Lur, Lecture 13-16]. Here we
provide a brief sketch of the proof.

We only need to prove the if part as the converse is obvious by Lemma 2.2.10. Moreover,
in light of Lemma 2.2.2 we may replace B by B[a,b] for an arbitrary interval [a, b] ⊆ (0, 1).
The key point is to show that every element in B[a,b] admits a (necessarily unique) factor-
ization into primitive elements. By a similar argument as in Proposition 2.2.11 the proof
boils down to showing that every h ∈ B[a,b] with ∂−Lh,[a,b](s) 6= ∂+Lh,[a,b](s) for some
s ∈ [− logp(b),− logp(a)] has a zero y ∈ Y[p−s,p−s].

Let us set Ŷ := Y ∪ { o }, where o denotes the equivalence class of F as the trivial untilt

of itself. Then Ŷ turns out to be complete with respect to an ultrametric d given by

d(y1, y2) := |θC2(ξ1)|C2
for all y1, y2 ∈ Ŷ

where ξ1 and C2 respectively denote a primitive element that vanishes at y1 and an untilt
of F that represents y2. If h is an element in Ainf [1/p, 1/[$]], an elegant approximation
argument using Legendre-Newton polygons allows us to construct a zero y ∈ Y[p−s,p−s] of h as

the limit of a Cauchy sequence (yn) in Ŷ with |yn| = p−s and lim
n!∞

|h(yn)|Cn = 0 where each

Cn is a representative of yn. For the general case, we can construct Cauchy sequences (hn)
in Ainf [1/p, 1/[$]] and (yn) in Y[p−s,p−s] with hn(yn) = 0 and lim

n!∞
hn = h with respect to the

Gauss p−s-norm, thereby obtaining a zero y ∈ Y[p−s,p−s] of h as the limit of (yn).

Corollary 2.4.2. The ring Bϕ=1 is a field.

Proof. Consider an arbitrary nonzero element f ∈ Bϕ=1. We have Div(f) = 0, since

otherwise f would be divisible by some g ∈ Bϕ=1/p, thereby contradicting Proposition 2.1.15.
Hence by Proposition 2.4.1 we deduce that f admits an inverse in Bϕ=1 as desired. �

Remark. As remarked after Proposition 2.1.15, we will see in Proposition 3.1.6 that Bϕ=1

is canonically isomorphic to Qp.

Lemma 2.4.3. Let f be an element in Bϕ=pn for some n ≥ 0, and let ε be an element
in 1 + m∗F . Assume that both f and log(ε) vanish at some y ∈ Y . Then there exists some

g ∈ Bϕ=pn−1
with f = log(ε)g.

Proof. By Proposition 2.3.9 we have

ordφi(y)(f) = ordy(f) ≥ 1 for all i ∈ Z.
In addition, by Proposition 2.3.10 we find

Div(log(ε)) =
∑
i∈Z

φi(y).

Since log(ε) belongs to Bϕ=p by construction, the assertion follows by Proposition 2.4.1. �
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Proposition 2.4.4. For every ε ∈ 1 + mF , the element log(ε) ∈ Bϕ=p is a prime in P .

Proof. The assertion is obvious for ε = 1 as P is an integral domain by Corollary 2.1.17.
We henceforth assume ε 6= 1. Consider arbitrary elements f and g in P such that log(ε)
divides fg in P . We wish to show that log(ε) divides either f or g in P . Since log(ε) is
homogeneous, we may assume without loss of generality that both f and g are homogeneous.
Proposition 2.3.5 implies that log(ε) vanishes at some yε ∈ Y . Then we find by Lemma 2.2.10
that either f or g vanishes at yε, and in turn deduce the desired assertion by Lemma 2.4.3. �

Proposition 2.4.5. Let f be a nonzero element in Bϕ=pn for some n ≥ 0.

(1) The map ϕ uniquely extends to an automorphism ϕ[1/f ] on B[1/f ].

(2) We may write

f = λ log(ε1) · · · log(εn) with λ ∈ Bϕ=1 and εi ∈ 1 + m∗F (2.10)

where the factors are uniquely determined up to Q×p -multiple.

Proof. The first statement is straightforward to verify. Let us prove the second statement
by induction on n. Since the assertion is obvious for n = 0, we henceforth assume n > 0.
Then f vanishes at some y ∈ Y ; otherwise, it would be invertible in B by Proposition 2.4.1

and thus would yield a nonzero element f−1 ∈ Bϕ=p−n , contradicting Proposition 2.1.15. Now

Lemma 2.4.3 and Proposition 2.3.11 together yield some εn ∈ 1 + mF and g ∈ Bϕ=pn−1
with

f = log(εn)g. Hence by induction hypothesis we obtain an expression as in (2.10), where the
factors are uniquely determined up to Q×p -multiple by Proposition 2.4.4. �

Definition 2.4.6. Given a nonzero homogeneous element f ∈ P , we refer to the map ϕ[1/f ]
described in Proposition 2.4.5 as the Frobenius automorphism of B[1/f ]. We often abuse
notation and write ϕ instead of ϕ[1/f ].

Proposition 2.4.7. Every non-generic point x ∈ X is a closed point, induced by a prime
log(ε) in P for some ε ∈ 1 + m∗F . Moreover, its residue field is naturally isomorphic to the
perfectoid field given by any y ∈ Y at which log(ε) vanishes.

Proof. By Proposition 2.4.5 there exists a nonzero element t ∈ Bϕ=p such that x lies in
the open subscheme Spec (B[1/t]ϕ=1) of X = Proj (P ). Let us denote by p the prime ideal

of B[1/t]ϕ=1 which corresponds to x, and take an element f/tn ∈ p with f ∈ Bϕ=pn . By
Proposition 2.4.5 we may write

f

tn
= λ · log(ε1)

t
· log(ε2)

t
· · · log(εn)

t
with λ ∈ Bϕ=1 and εi ∈ 1 + m∗F .

Since λ is a unit in Bϕ=1 by Corollary 2.4.2, we have log(ε)/t ∈ p for some ε ∈ 1 + m∗F .

Take an element y ∈ Y at which log(ε) vanishes, and choose a representative C of y. Then
t does not vanish at y, since otherwise Corollary 2.4.2 and Lemma 2.4.3 together would imply
that log(ε)/t is an invertible element in Bϕ=1, which is impossible as p is a prime ideal. We

thus obtain a map θx : B[1/t]ϕ=1 ↪−! B[1/t]� C where the second arrow is induced by θ̂C .

It suffices to show that θx is a surjective map whose kernel is generated by log(ε)/t.

Proposition 2.3.3 implies that θ̂C induces a surjection Bϕ=p � C, which in turn implies
that θx is already surjective when restricted to (1/t)Bϕ=p. Let us now consider an arbitrary
element f ′/tn ∈ ker(θx) with f ′ ∈ Bϕ=pn . Arguing as in the first paragraph, we find that

f ′/tn is divisible by log(ε′)/t ∈ ker(θx) for some ε′ ∈ 1 + m∗F . Then we have θ̂C(log(ε′)) = 0,
which means that log(ε′) vanishes at y. Therefore we deduce by Lemma 2.4.3 that log(ε)/t
divides log(ε′)/t, and thus divides f ′/t as desired. �
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Theorem 2.4.8 (Fargues-Fontaine [FF18]). The scheme X has the following properties:

(i) There exists a natural bijection |X| ∼−! Y/φZ which maps the point induced by log(ε)
for some ε ∈ 1 + m∗F to the set of elements in Y at which log(ε) vanishes.

(ii) X is a Dedekind scheme such that the open subscheme X\ { x } for every x ∈ |X| is
the spectrum of a principal ideal domain.

(iii) For every x ∈ |X|, its completed local ring ÔX,x admits a natural identification

ÔX,x ∼= B+
dR(y)

where y is any element in the image of x under the bijection |X| ∼−! Y/φZ.

Proof. Proposition 2.4.7 yields a surjective map 1 +m∗F � |X| which associates to each
ε ∈ 1+m∗F the point x ∈ X induced by the prime log(ε) ∈ P . Moreover, Lemma 2.4.3 implies
that two elements ε1 and ε2 in 1 +m∗F map to the same point in |X| if and only if log(ε1) and
log(ε2) have a common zero. Therefore we deduce the property (i) by Proposition 2.3.11.

Let us now fix a closed point x in X. As shown in the preceding paragraph, the point
x is induced by log(ε) for some ε ∈ 1 + m∗F . It follows that X\ { x } is the spectrum of

the ring B[1/ log(ε)]ϕ=1. In addition, we find by Proposition 2.4.7 that every prime ideal of

B[1/ log(ε)]ϕ=1 is a principal ideal. Therefore we obtain the property (ii) by a general fact as
stated in [Sta, Tag 05KH].

It remains to establish the property (iii). Let us fix an element y ∈ Y at which log(ε)
vanishes, and take an untilt C of F which represents y. We also choose an element t ∈ Bϕ=p

which is not divisible by log(ε). Then we have a surjective map θ̂C [1/t] : B[1/t]� C induced

by θ̂C . Let us denote by θx the restriction of θ̂C [1/t] to B[1/t]ϕ=1. Proposition 2.4.7 implies

that we may identify x as a point in Spec (B[1/t]ϕ=1) given by ker(θx). Hence we obtain an
identification

ÔX,x ∼= lim −
j

B[1/t]ϕ=1/ ker(θx)j . (2.11)

Meanwhile, Proposition 2.2.7 allows us to identify B+
dR(y) as the completed local ring of a

closed point ŷ ∈ Spec (B) given by ker(θ̂C), thereby yielding an identification

B+
dR(y) ∼= lim −

j

B[1/t]/ ker(θ̂C [1/t])j . (2.12)

For an arbitrary element f/tn ∈ B[1/t]ϕ=1 ∩ ker(θ̂C)j with f ∈ Bϕ=pn and j ≥ 1, we have
ordy(f) ≥ j and consequently find by Lemma 2.4.3 that f/tn is divisible by log(ε)j/tj . Since
log(ε)/t belongs to ker(θx), we obtain an identification

B[1/t]ϕ=1 ∩ ker(θ̂C)j = ker(θx)j for all j ≥ 1

and in turn get a natural injective map

lim −
j

B[1/t]ϕ=1/ ker(θx)j ↪−! lim −
j

B[1/t]/ ker(θ̂C [1/t])j . (2.13)

Moreover, since both B[1/t]ϕ=1/ ker(θx) and B[1/t]/ ker(θ̂C [1/t]) are isomorphic to C, the
map (2.13) is surjective by a general fact as stated in [Sta, Tag 0315]. Therefore we obtain
the property (iii) by (2.11) and (2.12). �

Remark. The scheme X is defined over Qp as we will see in Corollary 3.1.7. However, it
is not of finite type over Qp since the residue field of an arbitrary closed point is an infinite
extension of Qp by Proposition 2.4.7.

https://stacks.math.columbia.edu/tag/05KH
https://stacks.math.columbia.edu/tag/0315
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3. Vector bundles

Our main objective in this section is to discuss several key properties of vector bundles on
the Fargues-Fontaine curve. The primary references for this section are Fargues and Fontaine’s
survey paper [FF14] and Lurie’s notes [Lur].

3.1. Frobenius eigenspaces

In order to study the vector bundles on X, it is crucial to understand the structure of the
graded ring P =

⊕
Bϕ=pn . In this subsection, we aim to establish an explicit description of

the Frobenius eigenspaces Bϕ=pn for all n ≥ 0.

Proposition 3.1.1. The natural map F −! B given by Teichmüller lifts is continuous.

Proof. Take a characteristic 0 untilt C of F . The natural map F −! B composed

with θ̂C coincides with the sharp map associated to C, which is evidently continuous by
construction. Hence the assertion follows by Proposition 1.2.16. �

Lemma 3.1.2. For every f ∈ B with |f |ρ ≤ 1 for all ρ ∈ (0, 1), there exists a sequence (fn)

in Ainf [1/[$]] which converges to f with respect to all Gauss norms.

Proof. We may assume f 6= 0, since the assertion is obvious for f = 0. Take a sequence

(f̃n) in Ainf [1/p, 1/[$]] which converges to f with respect to all Gauss norms. For each n ≥ 1,

we may write f̃n = fn +
∑
i<0

[cn,i]p
i with cn,i ∈ F and fn ∈ Ainf [1/[$]]. Take arbitrary real

numbers ρ ∈ (0, 1) and ε > 0. Then for all sufficiently large n we have∣∣∣f̃n − fn∣∣∣
ρ

= sup
i<0

(
|cn,i| ρi

)
≤ sup

i<0

(
ε−i
)
· sup
i<0

(
|cn,i| εiρi

)
≤ ε ·

∣∣∣f̃n∣∣∣
ερ

= ε |f |ερ ≤ ε

where the second identity follows from Lemma 2.1.8. Hence we obtain lim
n!∞

∣∣∣f̃n − fn∣∣∣
ρ

= 0 for

all ρ ∈ (0, 1), thereby deducing that (fn) converges to f with respect to all Gauss norms. �

Proposition 3.1.3. Let f be an element in B. Assume that there exists an integer n ≥ 0
with |f |ρ ≤ ρn for all ρ ∈ (0, 1). Then we may write f = [c]pn+g for some c ∈ OF and g ∈ B
with |g|ρ ≤ ρn+1 for all ρ ∈ (0, 1).

Proof. We may replace f by f/pn to assume n = 0. Lemma 3.1.2 yields a sequence
(fi) in Ainf [1/[$]] which converges to f with respect to all Gauss norms. For each i ≥ 1,
we denote by [ci] the first coefficient in the Teichmüller expansion of fi. Then we have
|ci+1 − ci| ≤ |fi+1 − fi|ρ for all i ≥ 1 and ρ ∈ (0, 1). This means that the sequence (ci) is
Cauchy in F and thus converges to an element c ∈ F . In addition, given a real number
ρ ∈ (0, 1), Lemma 2.1.8 yields |ci| ≤ |fi|ρ = |f |ρ ≤ 1 for all sufficiently large i, thereby
implying c ∈ OF .

Let us now set gi := fi − [ci] ∈ Ainf [1/[$]] for each i ≥ 1 and take g := f − [c] ∈ B.
We may assume g 6= 0, since the assertion is obvious if we have g = 0. Each gi admits a
Teichmüller expansion where only positive powers of p occur, so that all slopes of Lgi are
positive integers by Proposition 2.1.7. Moreover, Proposition 3.1.1 implies that the sequence
(gi) converges to g with respect to all Gauss norms. Therefore we deduce by Lemma 2.1.8
that all slopes of Lg are positive integers. We then use Lemma 2.1.2 to obtain

Lg(s) ≥ min
(
Lf (s),L[c](s)

)
= min

(
− logp

(
|f |p−s

)
,− logp (|c|)

)
≥ 0 for all s > 0,

thereby deducing Lg(s) ≥ s for all s > 0, or equivalently |g|ρ ≤ ρ for all ρ ∈ (0, 1). �
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Proposition 3.1.4. Let f be a nonzero element in B.

(1) The element f belongs to Ainf if and only if we have |f |ρ ≤ 1 for all ρ ∈ (0, 1).

(2) The element f belongs to Ainf [1/p] if and only if there exists an integer n with |f |ρ ≤
ρn for all ρ ∈ (0, 1).

(3) The element f belongs to Ainf [1/[$]] if and only if there exists a constant C > 0 with
|f |ρ ≤ C for all ρ ∈ (0, 1).

(4) The element f belongs to Ainf [1/p, 1/[$]] if and only if there exist a constant C > 0
and an integer n with |f |ρ ≤ Cρn for all ρ ∈ (0, 1).

Proof. If f belongs to Ainf , then we clearly have |f |ρ ≤ 1 for all ρ ∈ (0, 1). Conversely,

if we have |f |ρ ≤ 1 for all ρ ∈ (0, 1), then by Proposition 3.1.3 we can inductively construct a

sequence (ci) in OF with∣∣∣∣∣f −
n−1∑
i=0

[ci]p
i

∣∣∣∣∣
ρ

≤ ρn for all n ≥ 0 and ρ ∈ (0, 1),

thereby deducing f ∈ Ainf . Therefore we establish the statement (1).

Now we find that f belongs to Ainf [1/p] if and only if there exists an integer n with
pnf ∈ Ainf , or equivalently |f |ρ ≤ |p|

−n
ρ = ρ−n for all ρ ∈ (0, 1), thereby obtaining the

statement (2). Similarly, we find that f belongs to Ainf [1/[$]] if and only if there exists an
integer n with [$n]f ∈ Ainf , or equivalently |f |ρ ≤ |[$]|−nρ = |$|−n for all ρ ∈ (0, 1), thereby

obtaining the statement (3). Finally, we find that f belongs to Ainf [1/p, 1/[$]] if and only if

there exist integers l and n with pn[$]lf ∈ Ainf , or equivalently |f |ρ ≤
∣∣[$]lpn

∣∣
ρ

= |$|l ρn for

all ρ ∈ (0, 1), thereby obtaining the statement (4). �

Lemma 3.1.5. Given a nonzero element f ∈ Bϕ=1, there exists an integer n with |f |ρ = ρn

for all ρ ∈ (0, 1).

Proof. By Lemma 2.1.14 we have

pLf (s) = Lϕ(f)(ps) = Lf (ps) for all s > 0, (3.1)

and consequently find p∂+Lf (s) = p∂+Lf (ps) for all s > 0. Hence Corollary 2.1.11 implies
that Lf is linear with integer slope, which means that there exist an integer n and a real
number r with Lf (s) = ns+ r for all s > 0. We then find r = 0 by (3.1), and in turn obtain
Lf (s) = ns for all s > 0, or equivalently |f |ρ = ρn for all ρ ∈ (0, 1). �

Proposition 3.1.6. The ring Bϕ=1 is canonically isomorphic to Qp.

Proof. Let W (Fp) denote the ring of Witt vectors over Fp. Under the identification

Qp
∼= W (Fp)[1/p] ∼=

{∑
[cn]pn ∈ Ainf [1/p] : cn ∈ Fp

}
, (3.2)

we may regard Qp as a subring of Bϕ=1. Let us now consider an arbitrary nonzero element
f ∈ Bϕ=1. Proposition 3.1.4 and Lemma 3.1.5 together imply that f is an element in Ainf [1/p].
Hence we may write f =

∑
[cn]pn with cn ∈ OF . Since f is invariant under ϕ, for each n ∈ Z

we find cpn = cn, or equivalently cn ∈ Fp. We thus deduce f ∈ Qp under the identification
(3.2), thereby completing the proof. �

Remark. Our proof does not depend on Proposition 2.4.1 that we assume without proof.

Corollary 3.1.7. The scheme X is defined over Qp.
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Proposition 3.1.8. The map log : 1 +mF −! Bϕ=p is a continuous Qp-linear isomorphism.

Proof. Choose a characteristic 0 untilt C of F . The sharp map associated to C is
continuous by construction. In addition, the map logµp∞ is continuous by Proposition 3.3.6

in Chapter II. Therefore it follows by Proposition 2.3.3 and Proposition 1.2.16 that the map
log is continuous. Moreover, since every element in Qp is the limit of a sequence in Z, we obtain
the Qp-linearity of log by Proposition 2.3.1, and consequently deduce the surjectivity of log
by Proposition 2.4.5 and Proposition 3.1.6. We also find that log is injective, as Proposition
2.3.10 yields log(ε) 6= 0 for every ε ∈ 1+m∗F . Therefore we establish the desired assertion. �

Corollary 3.1.9. There exists a natural bijection |X| ∼−! (Bϕ=p\ { 0 })/Q×p which maps the

point induced by log(ε) for some ε ∈ 1 + m∗F to the Q×p -orbit of log(ε) in Bϕ=p.

Proof. This is merely a restatement of the property (i) in Theorem 2.4.8 using Proposi-
tion 3.1.8. �

Corollary 3.1.10. Let f be a nonzero element in Bϕ=pn for some n ≥ 1. We may write

f = log(ε1) log(ε2) · · · log(εn) with εi ∈ 1 + m∗F

where the factors are uniquely determined up to Q×p -multiple.

Proof. This is an immediate consequence of Proposition 3.1.6, Proposition 3.1.8, and
Proposition 2.4.5. �

Remark. Corollary 3.1.9 and Corollary 3.1.10 are respectively analogues of the following
facts about the complex projective line P1

C = Proj (C[z1, z2]):

(1) Closed points in P1
C are in bijection with the Qp-orbits of linear homogeneous poly-

nomials in C[z1, z2].

(2) Every homogeneous polynomial in C[z1, z2] of positive degree admits a unique fac-
torization into linear homogeneous polynomials up to C×-multiple

It is therefore reasonable to expect that the Fargues-Fontaine curve X is geometrically similar
to P1

C, even though X is not of finite type over Qp. We will solidify this idea in the next
subsection by studying line bundles on the Fargues-Fontaine curve.

Proposition 3.1.11. Let B+ be the closure of Ainf [1/p] in B. For every n ∈ Z we have
Bϕ=pn ⊆ B+.

Proof. For n ≤ 0, the assertion is obvious by Proposition 2.1.15 and Proposition 3.1.6.
Moreover, we find

log(ε) =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ B+ for every ε ∈ 1 + mF

as each summand belongs to Ainf [1/p], thereby deducing the assertion for n ≥ 1 by Corollary
3.1.10. �

Remark. For every nonzero element f ∈ Bϕ=n, we find lim
s!0
Lf (s) = 0 by the functional

equation pLf (s) = ns+ Lf (ps) as obtained in the proof of Proposition 2.1.15. Hence we can
alternatively deduce Proposition 3.1.11 from an identification

B+ =
{
f ∈ B : lim

s!0
Lf (s) ≥ 0

}
which is not hard to verify using Proposition 2.1.9 and Proposition 3.1.4. We note that this
proof does not rely on Proposition 2.4.1 which we assume without proof.
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3.2. Line bundles and their cohomology

In this subsection, we classify and study line bundles on the Fargues-Fontaine curve.
Throughout this subsection, we denote by Div(X) the group of Weil divisors on X, and by
Pic(X) the Picard group of X. In addition, for every rational section f on X we write Div(f)
for its associated Weil divisor on X.

Definition 3.2.1. We define the divisor degree map of X to be the group homomorphism
deg : Div(X) −! Z with deg(x) = 1 for all x ∈ |X|.

Proposition 3.2.2. For every D ∈ Div(X), we have deg(D) = 0 if and only if D is principal.

Proof. Let K(X) denote the function field of X. We also let Q denote the fraction field
of P . Note that there exists a natural identification

K(X) ∼=
{
f/g ∈ Q : f, g ∈ Bϕ=pn for some n ≥ 0

}
. (3.3)

Consider an arbitrary element f ∈ K(X)×. By (3.3) and Corollary 3.1.10 there exist some
nonzero elements t1, t2, · · · , t2n ∈ Bϕ=p with

f =
t1t2 · · · tn

tn+1tn+2 · · · t2n
.

We then find deg(Div(f)) = 0 as Corollary 3.1.9 yields x1, x2, · · · , x2n ∈ |X| with Div(ti) = xi.

Let us now consider an arbitrary Weil divisor D on X with deg(D) = 0. We may write

D = (x1 + x2 + · · ·+ xn)− (xn+1 + xn+2 + · · ·+ x2n) with xi ∈ |X| .
Moreover, Corollary 3.1.9 yields t1, t2, · · · , t2n ∈ Bϕ=p with Div(ti) = xi. Hence we have

D = Div

(
t1t2 · · · tn

tn+1tn+2 · · · t2n

)
,

which is easily seen to be a principal divisor by (3.3). �

Definition 3.2.3. For every d ∈ Z, we write P (d) :=
⊕
n∈Z

Bϕ=pd+n and define the d-th twist

of OX to be the quasicoherent sheaf O(d) on X associated to P (d).

Lemma 3.2.4. For every d ∈ Z, the sheaf O(d) is a line bundle on X with a canonical
isomorphism O(d) ∼= O(1)⊗d.

Proof. The assertion follows from Corollary 3.1.10 by a general fact as stated in [Sta,
Tag 01MT]. �

Proposition 3.2.5. The divisor degree map of X induces a natural isomorphism Pic(X) ∼= Z
whose inverse maps each d ∈ Z to the isomorphism class of O(d).

Proof. Since X is a Dedekind scheme as noted in Theorem 2.4.8, we can identify Pic(X)
with the class group of X. Hence by Proposition 3.2.2 the divisor degree map of X induces
a natural isomorphism Pic(X) ∼= Z. Let us now choose a nonzero element t ∈ Bϕ=p, which
induces a closed point x on X by Corollary 3.1.9. It is straightforward to check that t is a
global section of O(1), which in turn implies by Lemma 3.2.4 that O(1) is isomorphic to the
line bundle that arises from the Weil divisor Div(t) = x on X. Hence the isomorphism class
of O(1) maps to deg(x) = 1 under the isomorphism Pic(X) ∼= Z. The assertion now follows
by Lemma 3.2.4. �

Remark. Proposition 3.2.5 is an analogue of the fact that there exists a natural isomorphism
Pic(P1

C) ∼= Z whose inverse maps each d ∈ Z to the isomorphism class of OP1
C
(d).

https://stacks.math.columbia.edu/tag/01MT
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Proposition 3.2.6. Let M =
⊕
n∈Z

Mn be a graded P -module, and let M̃ be the associated qua-

sicoherent OX-module. There exists a canonical functorial Qp-linear map M0 −! H0(X, M̃).

Proof. Since we have Bϕ=1 ∼= Qp as noted in Proposition 3.1.6, the assertion follows by
a general fact as stated in [Sta, Tag 01M7]. �

Definition 3.2.7. Given a graded P -module M , we refer to the map M0 −! H0(X, M̃) in
Proposition 3.2.6 as the saturation map for M .

Proposition 3.2.8. Let d be a nonnegative integer, and let t be a nonzero element in Bϕ=p.
The multiplication by t on P induces a commutative diagram of exact sequences

0 Bϕ=pd Bϕ=pd+1
Bϕ=pd+1

/tBϕ=pd 0

0 H0(X,O(d)) H0(X,O(d+ 1)) H0(X,O(d+ 1)/tO(d)) 0

∼

where the vertical arrows respectively represent the saturation maps for P (d), P (d + 1) and
P (d+ 1)/tP (d). Moreover, O(d+ 1)/tO(d) is supported at the point x ∈ |X| induced by t.

Proof. Since P is an integral domain by Corollary 2.1.17, the multiplication by t on P
yields an exact sequence of graded P -modules

0 P (d) P (d+ 1) P (d+ 1)/tP (d) 0
f 7!ft

(3.4)

which gives rise to an exact sequence of coherent OX -modules

0 O(d) O(d+ 1) O(d+ 1)/tO(d) 0. (3.5)

The top row of the diagram is induced by the sequence (3.4), and is exact. The bottom row
of the diagram is induced by the sequence (3.5), and is left exact. The commutativity of the
diagram is evident by the functoriality of saturation maps as noted in Proposition 3.2.6.

By Corollary 3.1.8 we may write t = log(ε) for some ε ∈ 1 +m∗F . In addition, Proposition
2.3.10 yields an element y ∈ Y at which t vanishes. Let us choose a representative C of y.

Proposition 2.3.3 implies that θ̂C restricts to a surjective map Bϕ=p � C. Hence for every

a ∈ C we can take s0, s ∈ Bϕ=p with θ̂C(s0) = 1 and θ̂C(s) = a, and consequently obtain

θ̂C(sd0s) = a. In particular, the map θ̂C restricts to a surjective map Bϕ=pd+1
� C. We also

find by Lemma 2.4.3 that the kernel of this map is given by tBϕ=pd . Therefore the map θ̂C
induces an isomorphism

Bϕ=pd+1
/tBϕ=pd ' C. (3.6)

Let us now take x ∈ |X| induced by t. Then Proposition 2.4.7 allows us to identify C
with the residue field of x. In addition, Proposition 3.2.5 implies that O(d) and O(d+ 1) are
respectively isomorphic to the line bundles that arise from the Weil divisors dx and (d+ 1)x.
It is then straightforward to verify that O(d+ 1)/tO(d) is supported at x with the stalk given
by t−d−1OX,x/t−dOX,x ' C. This means that O(d+1)/tO(d) is isomorphic to the skyscraper
sheaf at x with value C. Furthermore, by (3.6) we obtain an isomorphism

Bϕ=pd+1
/tBϕ=pd ' C ∼= H0(X,O(d+ 1)/tO(d)),

which is easily seen to coincide with the saturation map for P (d+ 1)/tP (d). We then deduce
by the commutativity of the second square that the bottom row is exact, thereby completing
the proof. �

https://stacks.math.columbia.edu/tag/01M7
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Theorem 3.2.9 (Fargues-Fontaine [FF18]). We have the following facts about the cohomol-
ogy of line bundles on X:

(1) There exists a canonical isomorphism H0(X,O(d)) ∼= Bϕ=pd for every d ∈ Z.

(2) The cohomology group H1(X,O(d)) vanishes for every d ≥ 0.

Proof. Take a nonzero element t ∈ Bϕ=p. By Corollary 3.1.9 there exists a closed
point x on X induced by t. Let us write U := X\ { x }. Then we have an identification

U ∼= Spec (B[1/t]ϕ=1).

For every d ∈ Z, the multiplication by t on P yields an injective map of P -graded modules
P (d) ↪−! P (d+ 1) by Corollary 2.1.17, and in turn gives rise to an injective sheaf morphism
O(d) ↪−! O(d + 1). In addition, Proposition 3.2.5 implies that each O(d) is isomorphic to
the line bundle that arises from the Weil divisor dx. We then find that lim−!O(d) is natu-
rally isomorphic to the pushforward of OU by the embedding U ↪−! X, and in turn obtain
identifications

H0
(
X, lim−!O(d)

) ∼= H0(U,OU ) ∼= B[1/t]ϕ=1, (3.7)

H1
(
X, lim−!O(d)

) ∼= H1(U,OU ) = 0. (3.8)

Let us now prove the statement (1). For every d ∈ Z, we denote by αd the saturation map
of P (d). We wish to show that each αd is an isomorphism. Proposition 3.2.8 implies that the
sequence (αd) gives rise to a map

B[1/t]ϕ=1 ∼= lim−!Bϕ=pd −! lim−!H0(X,O(d)) ∼= H0
(
X, lim−!O(d)

)
,

which is easily seen to coincide with the isomorphism (3.7). Moreover, Proposition 3.2.8 and
the snake lemma together yield isomorphisms

ker(αd) ' ker(αd+1) and coker(αd) ' coker(αd+1) for all d ≥ 0.

Therefore we deduce that αd is an isomorphism for every d ≥ 0. In particular, we have
H0(X,OX) ∼= Bϕ=1 ∼= Qp where the second isomorphism is given by Proposition 3.1.6. Then
for every d < 0, we find that there exists no nonzero element element of H0(X,OX) which
vanishes to order −d at x, and consequently obtain H0(X,O(d)) = 0. We thus deduce by
Proposition 2.1.15 that αd is an isomorphism for every d < 0 as well.

It remains to establish the statement (2). For every n ≥ 0, the last statement of Propo-
sition 3.2.8 implies that the cohomology of O(d + 1)/tO(d) vanishes in degree 1. Hence for
every d ≥ 0 we have a long exact sequence

H0(X,O(d+ 1)) H0(X,O(d+ 1)/tO(d)) H1(X,O(d)) H1(X,O(d)) 0,

which in turn yields an isomorphism H1(X,O(d)) ' H1(X,O(d + 1)) as the first arrow is
surjective by Proposition 3.2.8. The desired assertion now follows by (3.8). �

Remark. Theorem 3.2.9 provides analogues of the following facts about the complex projec-
tive line P1

C = Proj (C[z1, z2]):

(1) For every d ∈ Z, the cohomology group H0(P1
C,OP1

C
(d)) is naturally isomorphic to

the group of degree d homogeneous polynomials in C[z1, z2].

(2) For every d ≥ 0, the cohomology group H1(P1
C,OP1

C
(d)) vanishes.

However, it is known that H1(X,O(−1)) does not vanish while H1(P1
C,OP1

C
(−1)) vanishes.
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3.3. Harder-Narasimhan filtration

In this subsection, we review the Harder-Narasimhan formalism for vector bundles on a
complete algebraic curve.

Definition 3.3.1. A complete algebraic curve is a scheme Z with the following properties:

(i) Z is connected, separated, noetherian and regular of dimension 1.

(ii) The Picard group Pic(Z) admits a homomorphism degZ : Pic(Z) −! Z, called a
degree map, which takes a positive value on every line bundle that arises from a
nonzero effective Weil divisor on Z.

Example 3.3.2. Below are two important examples of complete algebraic curves.

(1) Every regular proper curve over a field is a complete algebraic curve by a general
fact as stated in [Sta, Tag 0AYY].

(2) The Fargues-Fontaine curve is a complete algebraic curve by Theorem 2.4.8 and
Proposition 3.2.5.

For the rest of this subsection, we fix a complete algebraic curve Z with a degree map
degZ on the Picard group Pic(Z). Our first goal in this subsection is to study the notion of
degree and slope for vector bundles on Z.

Definition 3.3.3. Let V be a vector bundle on Z.

(1) We write rk(V) for the rank of V, and define the degree of V by

deg(V) := degZ

(
∧rk(V)(V)

)
.

(2) If V is not zero, we define its slope by

µ(V) :=
deg(V)

rk(V)
.

(3) We denote by V∨ the dual bundle of V.

Proposition 3.3.4. Let U , V, and W be vector bundles on Z. Assume that there exits a
short exact sequence

0 U V W 0.

(1) We have identities

rk(V) = rk(U) + rk(W) and deg(V) = deg(U) + deg(W).

(2) If U , V, and W are all nonzero, then we have

min (µ(U) , µ(W)) ≤ µ(V) ≤ max (µ(U), µ(W))

with equality if and only if µ(U) and µ(W) are equal.

Proof. The first identity in the statement (1) is evident, whereas the second identity
in the statement (1) follows from a general fact as stated in [Sta, Tag 0B38]. It remains to
prove the the statement (2). Let us now assume that U , V, and W are all nonzero. By the
statement (1) we have

µ(V) =
deg(V)

rk(V)
=

deg(U) + deg(W)

rk(U) + rk(W)
.

If µ(U) and µ(W) are not equal, then µ(V) must lie between µ(U) and µ(W). Otherwise, we
find µ(U) = µ(V) = µ(W). �

https://stacks.math.columbia.edu/tag/0AYY
https://stacks.math.columbia.edu/tag/0B38
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Lemma 3.3.5. Let M and N be free modules over a ring R of rank r and r′. There exists a
canonical isomorphism

∧rr′(M ⊗R N) ∼= ∧r(M)⊗r
′ ⊗R ∧r

′
(N)⊗r.

Proof. Let us choose bases (mi) and (nj) for M and N , respectively. We have an
isomorphism of rank 1 free R-modules

∧rr′ (M ⊗R N) ' ∧r(M)⊗r
′ ⊗R ∧r

′
(N)⊗r (3.9)

which maps
∧

(mi ⊗ nj) to (
∧
mi)

⊗r′ ⊗ (
∧
nj)
⊗r. It suffices to show that this map does not

depend on the choices of (mi) and (nj). Take an invertible r × r matrix α = (αh,i) over R.
Then we have ∧(∑

αh,imi ⊗ nj
)

= det(α)r
′∧

(mi ⊗ nj),(∧(∑
αh,imi

))⊗r′
⊗
(∧

nj

)⊗r
= det(α)r

′
(∧

mi

)⊗r′
⊗
(∧

nj

)⊗r
.

Hence
∧

(
∑
αh,imi ⊗ nj) maps to (

∧
(
∑
αh,imi))

⊗r′ ⊗ (
∧
nj)
⊗r under (3.9). It follows that

the map (3.9) does not depend on the choice of (mi). By symmetry, the map (3.9) does not
depend on the choice of (nj) either. Therefore we deduce the desired assertion. �

Proposition 3.3.6. Let V and W be nonzero vector bundles on Z. Then we have

deg(V ⊗OZ W) = deg(V)rk(W) + deg(W)rk(V) and µ(V ⊗OZ W) = µ(V) + µ(W).

Proof. Since we have rk(V ⊗OX W) = rk(V)rk(W), the first identity is straightforward
to verify by Lemma 3.3.5. The second identity then immediately follows. �

Lemma 3.3.7. The cohomology group H0(Z,OZ) is a field.

Proof. Let K(Z) denote the function field of Z, and take an arbitrary element f ∈
K(Z)×. Then f yields a global section of OZ if and only if the associated Weil divisor Div(f)
on Z is effective. Since every principal divisor on Z induces a line bundle of degree 0, the
Weil divisor Div(f) is effective if and only if it is the zero divisor. We thus find

H0(Z,OZ)\ { 0 } =
{
f ∈ K(Z)× : Div(f) = 0

}
,

and consequently deduce that H0(Z,OZ) is a subfield of K(Z). �

Lemma 3.3.8. Let L and M be line bundles on Z.

(1) If we have deg(L) > deg(M), there is no nonzero OZ-module map from L to M.

(2) If we have deg(L) = deg(M), every nonzero OZ-module map from L to M is an
isomorphism.

Proof. Assume that there exists a nonzero OZ-module map s : L −! M. Then s
induces a nonzero global section on L∨ ⊗OZM via the identification

HomOZ (L,M) ∼= H0(Z,L∨ ⊗OZM). (3.10)

Hence L∨ ⊗OZM arises from an effective Weil divisor D on Z by a general fact as stated in
[Sta, Tag 01X0]. We then find

deg(M)− deg(L) = deg(L∨ ⊗OZM) ≥ 0, (3.11)

and consequently deduce the first statement.

Let us now assume deg(L) = deg(M). By (3.11) we have deg(L∨ ⊗OZ M) = 0, which
means that the effective Weil D must be zero. It follows that L∨ ⊗OZM is trivial, which in
turn implies by (3.10) and Lemma 3.3.7 that s is an isomorphism. �

https://stacks.math.columbia.edu/tag/01X0
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Proposition 3.3.9. A coherent OZ-module is a vector bundle if and only if it is torsion free.

Proof. Since Z is integral and regular by construction, the assertion follows from a
general fact as stated in [Sta, Tag 0CC4]. �

Proposition 3.3.10. Let V be a vector bundle on Z, and let W be a coherent subsheaf of V.

(1) W is a vector bundle on Z.

(2) W is contained in a subbundle W̃ of V with rk(W) = rk(W̃) and deg(W) ≤ deg(W̃).

Proof. Since W is evidently torsion free, the first statement follows from Proposition
3.3.9. Hence it remains to verify the second statement. We may assume W 6= 0, as otherwise
the assertion would be obvious. Let T denote the torsion subsheaf of the quotient V/W.

Take W̃ to be the preimage of T under the surjection V � V/W. Then W̃ is a torsion
free subsheaf of V with a torsion free quotient, and thus is a subbundle of V by Proposition

3.3.9. In addition, we have W ⊆ W̃ and W̃/W ' T by construction, and consequently

find rk(W̃) = rk(W) as T has rank 0 for being a torsion sheaf. We also have a nonzero

OZ-module map ∧rk(W)W −! ∧rk(W̃)W̃ induced by the embedding W ↪−! W̃, and in turn

obtain deg(W) ≤ deg(W̃) by Lemma 3.3.8. �

Remark. The subbundle W̃ of V that we constructed above is often referred to as the
saturation of W in V.

Proposition 3.3.11. Let V and W be vector bundles on Z of equal rank and degree. Assume
that W is a coherent subsheaf of V. Then we have V =W.

Proof. The embedding W ↪−! V induces a nonzero map ∧rk(W)(W) −! ∧rk(V)(V),
which is forced to be an isomorphism by Lemma 3.3.8. Hence at each point in Z the embedding
W ↪−! V yields an isomorphism on the stalks for having an invertible determinant. It follows
that the embedding W ↪−! V is an isomorphism. �

Proposition 3.3.12. Given a vector bundle V on Z, there is an integer dV with deg(W) ≤ dV
for every subbundle W of V.

Proof. If V is the zero bundle, the assertion is trivial. Let us now proceed by induction on
rk(V). We may assume that there exists a nonzero proper subbundle U of V, as otherwise the
assertion would be obvious. Consider an arbitrary subbundle W of V. Let us set P :=W ∩U
and denote by Q the image of W under the natural surjection V � V/U . Proposition 3.3.10
and the induction hypothesis together imply that P and Q are vector bundles on Z with

deg(P) ≤ dU and deg(Q) ≤ dV/U
for some integers dU and dV/U that do not depend on W. In addition, we have a short exact
sequence

0 P W Q 0.

Therefore we obtain
deg(W) = deg(P) + deg(Q) ≤ dU + dV/U

where the first identity follows from Proposition 3.3.4. �

Remark. On the other hand, if V is not a line bundle on Z, we don’t necessarily have an
integer d′V with deg(W) ≥ d′V for every subbundle W of V. In fact, in the context of the
complex projective line or the Fargues-Fontaine curve, it is known that such an integer d′V
never exists if V is not a line bundle.

https://stacks.math.columbia.edu/tag/0CC4
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We now introduce and study two important classes of vector bundles on Z.

Definition 3.3.13. Let V be a nonzero vector bundle on Z.

(1) We say that V is semistable if we have µ(W) ≤ µ(V) for every nonzero subbundle W
of V.

(2) We say that V is stable if we have µ(W) < µ(V) for every nonzero proper subbundle
W of V.

Remark. Here we don’t speak of semistability for the zero bundle, although some authors
say that the zero bundle is semistable of every slope.

Example 3.3.14. Every line bundle on Z is stable; indeed, a line bundle on Z has no nonzero
proper subbundles as easily seen by Proposition 3.3.4.

Proposition 3.3.15. Let V be a semistable vector bundle on Z. Every nonzero coherent
subsheaf W of V is a vector bundle on Z with µ(W) ≤ µ(V).

Proof. Proposition 3.3.10 implies that W is a vector bundle on Z, contained in some

subbundle W̃ of V with µ(W) ≤ µ(W̃). We then find µ(W̃) ≤ µ(V) by the semistability of V,
and consequently obtain the desired assertion. �

Proposition 3.3.16. Let V and W be semistable vector bundles on Z with µ(V) > µ(W).
Then we have HomOZ (V,W) = 0.

Proof. Suppose for contradiction that there is a nonzero OZ-module map f : V −!W.
Let Q denote the image of f . Proposition 3.3.15 implies that Q is a vector bundle on Z with

µ(Q) ≤ µ(W) < µ(V). (3.12)

Let us now consider the short exact sequence

0 ker(f) V Q 0.
f

We have ker(f) 6= 0 asQ and V are not isomorphic by (3.12). We thus obtain µ(ker(f)) ≤ µ(V)
by the semistability of V and consequently find µ(Q) ≥ µ(V) by Proposition 3.3.4, thereby
deducing a desired contradiction by (3.12). �

Remark. The converse of Proposition 3.3.16 does not hold in general. For example, if the
Picard group of Z is not isomorphic to Z, we get a nontrivial degree 0 line bundle L on Z
and find HomOZ (OZ ,L) = 0 by Lemma 3.3.8. On the other hand, if Z is taken to be the
complex projective line or the Fargues-Fontaine curve, then the converse of Proposition 3.3.16
is known to hold.

Proposition 3.3.17. Let V be a vector bundle on Z such that V⊗n is semistable for some
n > 0. Then V is semistable.

Proof. Consider an arbitrary nonzero subbundle W of V. We may regard W⊗n as a
subsheaf of V⊗n. Then we have µ(W⊗n) ≤ µ(V⊗n) by Proposition 3.3.15, and in turn find

µ(W) = µ(W⊗n)/n ≤ µ(V⊗n)/n = µ(V)

by Proposition 3.3.6. �

Remark. It is natural to ask if the tensor product of two arbitrary semistable vector bundles
on Z is necessarily semistable. If Z is a regular proper curve over a field of characteristic 0,
this is known to be true by the work of Narasimhan-Seshadri [NS65]. In addition, we will
see in Corollary 3.5.2 that this is true in the context of the Fargues-Fontaine curve. However,
this is false if Z is defined over a field of characteristic p, as shown by Gieseker [Gie73].
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Proposition 3.3.18. Let V and W be semistable vector bundles on Z of slope λ.

(1) Every extension of W by V is a semistable vector bundle on Z of slope λ.

(2) For every f ∈ HomOZ (V,W), both ker(f) and coker(f) are either trivial or semistable
vector bundles on Z of slope λ.

Proof. Let E be a vector bundle on X which fits into a short exact sequence

0 V E W 0.

By Proposition 3.3.4 we find µ(E) = λ. Take an arbitrary subbundle F of E , and denote by
F ′ its image under the map E �W. By construction we have a short exact sequence

0 V ∩ F F F ′ 0.

In addition, Proposition 3.3.15 implies that V ∩ F and F ′ are vector bundles on Z with

µ(V ∩ F) ≤ µ(V) = λ and µ(F ′) ≤ µ(W) = λ.

We then find µ(F) ≤ λ = µ(E) by Proposition 3.3.4, thereby deducing the statement (1).

It remains prove the statement (2). The assertion is trivial for f = 0. We henceforth
assume f 6= 0, and denote by Q the image of f . Then we have a short exact sequence

0 ker(f) V Q 0,

Moreover, Proposition 3.3.15 implies that ker(f) and Q are vector bundles on Z with

deg(ker(f)) ≤ µ(V) · rk(ker(f)) = λ · rk(ker(f)) and µ(Q) ≤ µ(W) = λ.

Hence by Proposition 3.3.4 we find

deg(ker(f)) = λ · rk(ker(f)) and µ(Q) = λ.

Since every subbundle of ker(f) is a coherent subsheaf of V, the first identity and Proposition
3.3.15 together imply that ker(f) is either zero or semistable of slope λ.

Meanwhile, Proposition 3.3.10 implies that Q is contained in a subbundle Q̃ of W with

rk(Q) = rk(Q̃) and deg(Q) ≤ deg(Q̃). (3.13)

Then by the semistability of V we obtain

λ = µ(Q) ≤ µ(Q̃) ≤ µ(W) = λ,

and consequently find that the inequality in (3.13) is indeed an equality. Hence Proposition

3.3.11 yields Q = Q̃, which in particular means that Q is a subbundle of W.

Let us now assume that coker(f) is not zero. Since we have a short exact sequence

0 Q W coker(f) 0,

our discussion in the preceding paragraph and Proposition 3.3.4 together imply that coker(f)
is a vector bundle on Z with µ(coker(f)) = λ. We wish to show that coker(f) is semistable.
Take an arbitrary subbundle R of coker(f), and denote by R′ its preimage under the map
W � coker(f). Then we have a short exact sequence

0 Q R′ R 0.

In addition, Proposition 3.3.15 implies that R′ is a vector bundle on Z with

µ(R′) ≤ µ(W) = λ = µ(Q).

Hence we find µ(R) ≤ µ(Q) = λ = µ(coker(f)) by Proposition 3.3.4, and consequently deduce
that coker(f) is semistable as desired. �



152 IV. THE FARGUES-FONTAINE CURVE

Our final goal in this subsection is to show that every vector bundle on Z admits a unique
filtration whose successive quotients are semistable vector bundles with strictly increasing
slopes.

Definition 3.3.19. Let V be a vector bundle on Z. A Harder-Narasimhan filtration of V is
a filtration by subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V
such that the successive quotients V1/V0, · · · ,Vn/Vn−1 are semistable vector bundles on Z
with µ(V1/V0) > · · · > µ(Vn/Vn−1).

Lemma 3.3.20. Given a nonzero vector bundle V on Z, there exists a semistable subbundle
V1 of V with µ(V1) ≥ µ(V) and µ(V1) > µ(U) for every nonzero subbundle U of V/V1.

Proof. For an arbitrary nonzero subbundle W of V, we have 0 < rk(W) ≤ rk(V) and
deg(W) ≤ dV for some fixed integer dV given by Proposition 3.3.12. This implies that the set

S := { q ∈ Q : q = µ(W) for some nonzero subbundle W of V }
is discrete and bounded above. In particular, the set S contains the largest element λ.

Let us take V1 to be a maximal subbundle of V with µ(V1) = λ. By construction we have
µ(V1) ≥ µ(V). Moreover, since every subbundle of V1 is a coherent subsheaf of V, Proposition
3.3.10 and the maximality of λ together imply that V1 is semistable. Let us now consider

an arbitrary nonzero subbundle U of V/V1, and denote by Ũ its preimage under the natural
surjection V � V/V1. Then we have a short exact sequence

0 V1 Ũ U 0.

In addition, the maximality of λ and V1 implies µ(Ũ) < λ = µ(V1). Therefore we find
µ(U) < µ(V1) by Proposition 3.3.4, thereby completing the proof. �

Remark. Our proof above relies on the fact that the group Z is discrete. However, as noted in
[Ked17, Lemma 3.4.10], it is not hard to prove Lemma 3.3.20 without using the discreteness
of Z. As a consequence, we can extend all of our discussion in this subsection to some other
contexts where the degree of a vector bundle takes a value in a nondiscrete group such as
Z[1/p]. We refer the curious readers to [Ked17, Example 3.5.7] for a discussion of such an
example.

Lemma 3.3.21. Let V be a nonzero vector bundle on Z. Assume that V admits a Harder-
Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.
For every semistable vector bundle W on Z with HomOZ (W,V) 6= 0, we have µ(W) ≤ µ(V1).

Proof. Take a nonzero OZ-module map f : W −! V, and denote its image by Q.
Since Q is a nonzero coherent subsheaf of V, there exists the smallest integer i ≥ 1 with

Q ⊆ Vi. Then we find that f induces a nonzero OZ-module map W f
−! Vi � Vi/Vi−1, and

consequently obtain

µ(W) ≤ µ(Vi/Vi−1) ≤ µ(V1)

where the first inequality follows by Proposition 3.3.16. �

Remark. Lemma 3.3.21 does not hold without the semistability assumption on W. For
example, if we take W := V ⊕ L where L is a line bundle on Z with µ(L) > µ(V), we find
HomOX (W,V) 6= 0 and µ(W) > µ(V).
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Theorem 3.3.22 (Harder-Narasimhan [HN75]). Every vector bundle V on Z admits a
unique Harder-Narasimhan filtration.

Proof. Let us proceed by induction on rk(V). If V is the zero bundle, the assertion is
trivial. We henceforth assume that V is not zero.

We first assert that V admits a Harder-Narasimhan filtration. Lemma 3.3.20 yields a
semistable subbundle V1 of V with µ(V1) > µ(U) for every nonzero subbundle U of V/V1. By
the induction hypothesis, the vector bundle V/V1 on Z admits a Harder-Narasimhan filtration

0 = U1 ⊂ · · · ⊂ Un = V/V1. (3.14)

For each i = 2, · · · , n, let us set Vi to be the preimage of Ui under the natural surjection
V � V/V1. Then we find

Vi/Vi−1
∼= Ui/Ui−1 for each i = 2, · · · , n.

Moreover, by construction we have µ(V1) > µ(U2) whenever the filtration (3.14) is not trivial.
Therefore V admits a Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V. (3.15)

It remains to show that (3.15) is a unique Harder-Narasimhan filtration of V. Assume
that V admits another Harder-Narasimhan filtration

0 =W0 ⊂ W1 ⊂ · · · ⊂ Wl = V. (3.16)

Since W1 is a nonzero subbundle of V, Lemma 3.3.21 yields µ(W1) ≤ µ(V1). Then by sym-
metry we obtain µ(V1) ≤ µ(W1), and thus find µ(V1) = µ(W1). Now we have

µ(W1) = µ(V1) > µ(V2/V1) = µ(U2/U1)

unless the filtration (3.14) is trivial. It follows by Lemma 3.3.21 that HomOZ (W1,V/V1)
vanishes. We then find W1 ⊆ V1 by observing that the natural map W1 ↪−! V � V/V1 must
be zero. By symmetry we also obtain V1 ⊆ W1, and consequently deduce that V1 and W1 are
equal. The filtration (3.16) then induces a Harder-Narasimhan filtration

0 =W1/V1 ⊂ · · ·Wl/V1 = V/V1, (3.17)

which must coincide with the filtration (3.14) by the induction hypothesis. Since each Wi is
the preimage ofWi/V1 under the natural surjection V � V/V1, we deduce that the filtrations
(3.15) and (3.16) coincide. �

Remark. A careful examination of our proof shows that Theorem 3.3.22 is a formal conse-
quence of Proposition 3.3.4 and Proposition 3.3.10. In other words, Theorem 3.3.22 read-
ily extends to any exact category C equipped with assignments rkC : C −! Z≥0 and
degC : C −! Z that satisfy the following properties:

(i) Both rkC and degC are additive on short exact sequences.

(ii) Every monomorphism f : A −! B in C factors through some admissible monomor-

phism f̃ : Ã −! B with rkC (A) = rkC (Ã) and degC (A) ≤ degC (Ã).

Such a category is called a slope category.

We will see that the category of vector bundles on the Fargues-Fontaine curve is closely
related to two other slope categories, namely the category of isocrystals and the category of
filtered isocrystals. This fact will be crucial for studying the essential image of the crystalline
functor in §4.2.
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3.4. Semistable bundles and unramified covers

In this subsection, we construct semistable vector bundles on the Fargues-Fontaine curve
by studying its unramified covers.

Definition 3.4.1. Let h be a positive integer.

(1) We denote by Eh the degree r unramified extension of Qp, and define the degree h
unramified cover of X to be the natural map

πh : X ×Spec (Qp) Spec (Eh) −! X.

(2) We write Xh := X ×Spec (Qp) Spec (Eh) and Ph :=
⊕
n≥0

Bϕh=pn .

Lemma 3.4.2. Let r and n be integers with r > 0. Given a positive integer h and a nonzero
homogeneous element f ∈ P , we have a canonical isomorphism

B[1/f ]ϕ
r=pn ⊗Qp Eh

∼= B[1/f ]ϕ
rh=pnh .

Proof. The group Gal(Eh/Qp) is cyclic of order h, and admits a canonical generator γ
which lifts the p-th power map on Fph . Moreover, for every n ∈ Z there exists an action of

Gal(Eh/Qp) on B[1/f ]ϕ
rh=pnh such that γ acts via p−nϕr. We thus find

B[1/f ]ϕ
r=pn =

(
B[1/f ]ϕ

rh=pnh
)Gal(Eh/Qp)

,

and consequently deduce the desired isomorphism by the Galois descent for vector spaces. �

Proposition 3.4.3. For every positive integer h, we have a canonical isomorphism

Xh
∼= Proj (Ph) .

Proof. By Lemma 3.4.2 we have Bϕ=pn ⊗Qp Eh
∼= Bϕh=pnh for every n ∈ Z, and conse-

quently obtain a natural isomorphism

Xh
∼= Proj

(
P ⊗Qp Eh

) ∼= Proj

⊕
n≥0

Bϕh=pnh

 ∼= Proj

⊕
n≥0

Bϕh=pn


as desired. �

We invoke the following generalization of Corollary 3.1.10 without proof.

Proposition 3.4.4. Let h and n be positive integers. Every nonzero element f ∈ Bϕh=pn

admits a factorization

f = f1 · · · fn with fi ∈ Bϕh=p

where the factors are uniquely determined up to E×h -multiple.

Remark. Let us briefly sketch the proof of Proposition 3.4.4. The theory of Lubin-Tate
formal groups yields a unique 1-dimensional p-divisible formal group law µLT over OEh with

[p]µLT(t) = pt + tp
h
. Denote by GLT the associated p-divisible group over OEh . By means of

the logarithm for GLT, we can construct a group homomorphism

logh : GLT(OF ) := lim −
i

GLT(OF /mi
FOF ) −! Bϕh=p.

It is then not hard to extend the results from §2.3, §2.4, and §3.1 with logh, GLT(OF ), ϕh,
φh, Ph, and Xh respectively taking the roles of log, 1 + m∗F , ϕ, φ, P , and X. We refer the
readers to [Lur, Lecture 22-26] for details.
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Definition 3.4.5. Let d and h be integers with h > 0. We define the d-th twist of OXh to be

the quasicoherent OXh-module Oh(d) associated to Ph(d) :=
⊕
n∈Z

Bϕh=pd+n , where we identify

Xh
∼= Proj (Ph) as in Proposition 3.4.3.

Lemma 3.4.6. Let h be a positive integer. For every d ∈ Z, the OXh-module Oh(d) is a line
bundle on Xh with a canonical isomorphism Oh(d) ∼= Oh(1)⊗d.

Proof. The assertion follows from Proposition 3.4.4 by a general fact as stated in [Sta,
Tag 01MT]. �

Definition 3.4.7. Let h be a positive integer.

(1) For every positive integer r, we define the degree r unramified cover of Xh to be the
natural map

πrh,h : Xrh
∼= Xh ×Spec (Eh) Spec (Erh) −! Xh.

(2) For every pair of integers (d, r) with r > 0, we write Oh(d, r) := (πrh,h)∗Orh(d).

(3) For every nonzero homogeneous f ∈ P , we denote by Dh(f) the preimage of the

open subscheme D(f) := Spec (B[1/f ]ϕ=1) ⊆ X under πh.

Lemma 3.4.8. Let h be a positive integer.

(1) The scheme Xh is covered by open subschemes of the form Dh(f) for some nonzero
homogeneous element f ∈ P .

(2) Given two nonzero homogeneous f and g in P , we have Dh(f) ∩Dh(g) = Dh(fg).

Proof. Both statements evidently hold for h = 1 as we have X1 = X = Proj (P ). The
assertion for the general case then follows by the surjectivity of πh. �

Proposition 3.4.9. Let d, h, and r be integers with h, r > 0.

(1) The OXh-module Oh(d, r) is a vector bundle on Xh of rank r.

(2) Given a nonzero homogeneous f ∈ P , there exists a canonical identification

Oh(d, r) (Dh(f)) ∼= B[1/f ]ϕ
hr=pd .

Proof. The first statement follows from Lemma 3.4.6 since the morphism πrh,h is finite
of degree r. The second statement is obvious by construction. �

Proposition 3.4.10. Let d and r be integers with r > 0. Given arbitrary positive integers h
and n, there exists a natural identification

(πhn,h)∗Oh(d, r) ∼= Ohn(dn, r).

Proof. Let f ∈ P be an arbitrary nonzero homogeneous element. Since Dhn(f) is the
inverse image of Dh(f) under πhn,h, we use Lemma 3.4.2 and Proposition 3.4.9 to find

(πhn,h)∗Oh(d, r) (Dhn(f)) ∼= Oh(d, r) (Dh(f))⊗
B[1/f ]ϕ

h=1 B[1/f ]ϕ
hn=1

∼= B[1/f ]ϕ
hr=pd ⊗

B[1/f ]ϕ
h=1

(
B[1/f ]ϕ

h=1 ⊗Qp En

)
∼= B[1/f ]ϕ

hr=pd ⊗Qp En

∼= B[1/f ]ϕ
hnr=pdn

∼= Ohn(dn, r) (Dhn(f)) .

The desired assertion now follows by Lemma 3.4.8. �

https://stacks.math.columbia.edu/tag/01MT
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Proposition 3.4.11. Let d and r be integers with r > 0. Given arbitrary positive integers h
and n, we have a natural isomorphism

Oh(dn, rn) ∼= Oh(d, r)⊕n.

Proof. By Proposition 3.4.10 we obtain a natural isomorphism

Oh(dn, rn) = (πhr,h)∗(πhnr,hr)∗Ohnr(dn) ∼= (πhr,h)∗(πhnr,hr)∗(πhnr,hr)
∗Ohr(d).

Then we use the projection formula to find

(πhnr,hr)∗(πhnr,hr)
∗Ohr(d) ∼= (πhnr,hr)∗OXhnr ⊗OXhr Ohr(d) ∼= O⊕nXhr ⊗OXhr Ohr(d) ∼= Ohr(d)⊕n,

and consequently deduce the desired assertion. �

Proposition 3.4.12. Let h be a positive integer. We have a canonical isomorphism

Oh(d1, r1)⊗OXh Oh(d2, r2) ∼= Oh(d1r2 + d2r1, r1r2)

for all integers d1, d2, r1, r2 with r1, r2 > 0.

Proof. Let g and l respectively denote the greatest common divisor and the least common
multiple of r1 and r2. Since r1/g and r2/g are relatively prime integers, the fields Er1h and
Er2h are linearly disjoint finite extensions of Egh with Er1hEr2h = Elh. Hence we have an
identification Elh ∼= Er1h ⊗Egh Er2h, which gives rise to a cartesian diagram

Xlh Xr2h

Xr1h Xgh

πlh,r2h

πlh,r1h πr2h,gh

πr1h,gh

where all arrows are finite étale. Let us now write r′1 := r1/g and r′2 := r2/g. Then we find

Ogh(d1, r
′
1)⊗OXgh Ogh(d2, r

′
2) = (πr1h,gh)∗(Or1h(d1))⊗OXgh (πr2h,gh)∗(Or2h(d2))

∼= (πlh,gh)∗

(
(πlh,r1h)∗Or1h(d1)⊗OXlh (πlh,r2h)∗Or2h(d2)

)
∼= (πlh,gh)∗

(
Olh(d1r

′
1)⊗OXlh Olh(d2r

′
2)
)

∼= (πlh,gh)∗Olh(d1r
′
1 + d2r

′
2)

= Ogh(d1r
′
1 + d2r

′
2, r
′
1r
′
2)

where the isomorphisms respectively follow from the Künneth formula, Proposition 3.4.10,
and Lemma 3.4.6. We thus use the projection formula, Proposition 3.4.10, and Proposition
3.4.11 to obtain an identification

Oh(d1, r1)⊗OXh Oh(d2, r2) = (πgh,h)∗Ogh(d1, r
′
1)⊗OXh Oh(d2, r2)

∼= (πgh,h)∗

(
Ogh(d1, r

′
1)⊗OXgh (πgh,h)∗Oh(d2, r2)

)
∼= (πgh,h)∗

(
Ogh(d1, r

′
1)⊗OXgh Ogh(d2g, r2)

)
∼= (πgh,h)∗

(
Ogh(d1, r

′
1)⊗OXgh Ogh(d2, r

′
2)⊕g

)
∼= (πgh,h)∗Ogh(d1r

′
1 + d2r

′
2, r
′
1r
′
2)⊕g

= Oh(d1r
′
1 + d2r

′
2, gr1r2)⊕g

∼= Oh(d1r1 + d2r2, r1r2),

thereby completing the proof. �
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Proposition 3.4.13. Let d and r be ingeters with r > 0. For every positive integer h, there
exists a canonical isomorphism

Oh(d, r)∨ ∼= Oh(−d, r).

Proof. Proposition 3.4.11 and Proposition 3.4.12 together yield a natural map

Oh(d, r)⊗OXh Oh(−d, r) ∼= O⊕r
2

Xh
∼= O⊕rXh ⊗OXh

(
O⊕rXh

)∨
−! OXh

where the last arrow is given by the trace map. It is straightforward to verify that this map
is a perfect pairing, which in turn yields the desired isomorphism. �

Proposition 3.4.14. Let d and r be integers with r > 0.

(1) The vector bundle O(d, r) := O1(d, r) on X is semistable of rank r and degree d.

(2) If d and r are relatively prime, then the bundle O(d, r) is stable.

Proof. Proposition 3.4.11 and Proposition 3.4.12 together yield a natural isomorphism

O(d, r)⊗r ∼= O(drr, rr) ∼= O(d)⊕r
r
. (3.18)

Moreover, we find deg
(
O(d)⊕r

r)
= drr by Proposition 3.3.4. Therefore it follows by Proposi-

tion 3.3.6 and Proposition 3.4.9 that O(d, r) is of rank r and degree d. Furthermore, since O(d)
is stable as noted in Example 3.3.14, we find by Proposition 3.3.18 that O(d)⊕r

r
is semistable,

and consequently deduce by (3.18) and Proposition 3.3.17 that O(d, r) is semistable as well.

Let us now assume that d and r are relatively prime. Take an arbitrary nonzero proper
subbundle V of O(d, r). We have µ(V) 6= d/r as rk(V) is less than rk(O(d, r)) = r. Hence we
find µ(V) < λ by the semistability of O(d, r), thereby deducing that O(d, r) is stable. �

Remark. Proposition 3.4.14 readily extends to Oh(d, r) and Xh for every positive integer h,
as it turns out that Xh is a complete algebraic curve. In fact, extending the remark after
Proposition 3.4.4, it is not hard to show that all results from §3.2 remain valid with ϕh, Ph,
Xh, and Oh(d) respectively in place of ϕ, P , X, and O(d); in particular, Xh is a Dedekind
scheme whose Picard group is isomorphic to Z.

Definition 3.4.15. Let λ = d/r be a rational number, written in a reduced form with r > 0.
We refer to O(λ) := O1(d, r) as the canonical stable bundle on X of slope λ.

Proposition 3.4.16. Let λ be a rational number.

(1) There exists a canonical isomorphism O(λ)∨ ∼= O(−λ).

(2) Given a rational number λ′, we have a natural isomorphism

O(λ)⊗OX O(λ′) ∼= O(λ+ λ′)⊕n

for some positive integer n.

Proof. The first statement is a special case of Proposition 3.4.13. The second statement
follows from Proposition 3.4.11 and Proposition 3.4.12. �

Remark. By the remark after Proposition 3.4.14, for every positive integer h we can define
the canonical stable bundle Oh(λ) of slope λ on Xh and extend Proposition 3.4.16 to Oh(λ).
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3.5. Classification of the vector bundles

In this subsection, we describe a complete classification of vector bundles on the Fargues-
Fontaine curve. We invoke the following technical result without proof.

Proposition 3.5.1. Let λ be a rational number.

(1) A vector bundle on X is semistable of slope λ if and only if is isomorphic to O(λ)⊕n

for some n ≥ 1.

(2) If we have λ ≥ 0, the cohomology group H1(X,O(λ)) vanishes.

Remark. The second statement is relatively easy to prove. Let us write λ = d/r where d and
r are relatively prime integers with r > 0. As remarked after Proposition 3.4.14, Theorem
3.2.9 is valid with Or(d) and Xr respectively in place of O(d) and X. Hence for λ ≥ 0 we find

H1(X,O(λ)) = H1(X, (πr)∗Or(d)) ∼= H1(Xr,Or(d)) = 0.

On the other hand, the first statement is one of the most technical results from the original
work of Fargues and Fontaine [FF18]. Here we can only sketch some key ideas for the proof.
We refer the curious readers to [FF14, §6] for a good exposition of the proof.

The if part of the first statement is immediate by Proposition 3.4.14. In order to prove the
converse, it is essential to simultaneously consider all unramified covers of X; more precisely,
we assert that every semistable vector bundle V on Xh of slope λ is isomorphic to Oh(λ)⊕n

for some n ≥ 1, where we set Oh(λ) := Oh(d, r). The proof of this statement is given by a
series of dévissage arguments as follows:

(a) We may replace V with (πrh,r)
∗V to assume that λ is an integer; this reduction is

based on the identification (πrh,r)∗(πrh,r)
∗Oh(λ) ∼= Oh(d)⊕r given by Proposition

3.4.10 and the fact that (πrh,r)
∗V is semistable of slope d as seen by an elementary

Galois descent argument based on Theorem 3.3.22.

(b) We may replace V by V(−λ) := V ⊗OXh Oh(−λ) to further assume λ = 0; this

reduction is based on the identification Oh(λ) ∼= Oh ⊗OXh Oh and the fact that

V(−λ) is semistable of slope 0 as easily seen by Proposition 3.3.6.

(c) With λ = 0, it suffices to prove that H0(Xh,V) does not vanish; indeed, any nonzero
global section of V gives rise to an exact sequence of vector bundles on Xh

0 OXh V W 0

whereW is semistable of slope 0 by Proposition 3.3.18, thereby allowing us to proceed
by induction on rk(V) with the identification Ext1

OXh
(Oh,Oh) ∼= H1(Xh,OXh) = 0.

(d) The proof further reduces to the case where V fits into a short exact sequence

0 Oh(−1/n) V Oh(1) 0

with n = rk(V)− 1; this reduction involves a generalization of Grothendieck’s argu-
ment for the classification of vector bundles on the projective line.

(e) The exact sequence above turns out to naturally arise from p-divisible groups, as we
will remark after Example 3.5.4; as a consequence the assertion eventually follows
from some results about period morphisms on the Lubin-Tate spaces due to Drinfeld
[Dri76], Gross-Hopkins [GH94], and Laffaille [Laf85].

Corollary 3.5.2. The tensor product of two semistable vector bundles on X is semistable.

Proof. This is an immediate consequence of Proposition 3.4.16 and Proposition 3.5.1. �
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Theorem 3.5.3 (Fargues-Fontaine [FF18]). Every vector bundle V on X admits a unique
Harder-Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V,

which (noncanonically) splits into a direct sum decomposition

V '
n⊕
i=1

O(λi)
⊕mi

where we set λi := µ(Vi/Vi−1) for each i = 1, · · · , n.

Proof. Existence and uniqueness of the Harder-Narasimhan filtration is an immediate
consequence of Theorem 3.3.22. Hence it remains to prove that the Harder-Narasimhan
filtration splits. Let us proceed by induction on n. If we have n = 0, then the assertion is
trivial. We henceforth assume n > 0. By construction each successive quotient Vi/Vi−1 is
semistable of slope λi. Hence Proposition 3.5.1 yields an isomorphism

Vi/Vi−1 ' O(λi)
⊕mi for each i = 1, · · · , n (3.19)

where mi is a positive integer. Moreover, by the induction hypothesis, the filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1

splits into a direct sum decomposition

Vl−1 '
n−1⊕
i=1

O(λi)
⊕mi . (3.20)

Hence it suffices to establish the identity

Ext1
OX (V/Vn−1,Vn−1) = 0. (3.21)

For each i = 1, · · · , n, Proposition 3.4.16 yields an identification

Ext1
OX (O(λn),O(λi)) ∼= H1(X,O(λi)⊗OX O(λn)∨) ∼= H1(X,O(λi − λn)⊕ni)

where ni is a positive integer. Since we have λi ≥ λn for each i = 1, · · · , n, we find

Ext1
OX (O(λn),O(λi)) = 0 for each i = 1, · · · , n

by Proposition 3.5.1. Therefore we deduce the identity (3.21) by the decompositions (3.19)
and (3.20), thereby completing the proof. �

Remark. Theorem 3.5.3 is an analogue of the fact that every vector bundleW on the complex
projective line P1

C admits a direct sum decomposition

W '
l⊕

j=1

OP1
C
(dj)

⊕kj with dj ∈ Z.

The only essential difference is that semistable vector bundles on X may have rational slopes,
whereas semistable vector bundles on P1

C have integer slopes. This difference comes from the
fact that we have H1(X,O(−1)) 6= 0 and H1(P1

C,OP1
C
(−1)) = 0 as remarked after Theorem

3.2.9.

It is worthwhile to mention that an equivalent result of Theorem 3.5.3 was first obtained
by Kedlaya [Ked05]. In fact, Kedlaya’s result can be reformulated as a classification of vector
bundles on the adic Fargues-Fontaine curve, which recovers Theorem 3.5.3 by Theorem 1.3.24.
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Example 3.5.4. Let us write W (Fp) for the ring of Witt vectors over Fp, and K0 for the

fraction field of W (Fp). Let N be an isocrystal over K0 which admits a decomposition

N '
n⊕
i=1

N(λi)
⊕mi with λi ∈ Q. (3.22)

We assert that N naturally gives rise to a vector bundle E(N) on X with an isomorphism

E(N) '
n⊕
i=1

O(λi)
⊕mi . (3.23)

We may regard K0 as a subring of B under the identification

K0 = W (Fp)[1/p] ∼=
{∑

[cn]pn ∈ Ainf [1/p] : cn ∈ Fp
}
.

Then by construction ϕ restricts to the Frobenius automorphism of K0, and thus acts on N
and N∨ via the Frobenius automorphisms ϕN and ϕN∨ . Hence we get a graded P -module

P (N) :=
⊕
n≥0

(N∨ ⊗K0 B)ϕ=pn .

Let us set E(N) to be the associated quasicoherent sheaf on X, and take an arbitrary
nonzero homogeneous element f ∈ P . In addition, for each i = 1, · · · , n, we write λi := di/ri
where di and ri are relatively prime integers with ri > 0. By construction we have

E(N)(D(f)) ∼=
(
N∨ ⊗K0 B[1/f ]

)ϕ=1
= (HomK0(N,K0)⊗K0 B[1/f ])ϕ=1

∼= HomK0(N,B[1/f ])ϕ=1.
(3.24)

Moreover, since each N(λi) admits a basis (ϕj(n)) for some n ∈ N(λi) with ϕri(n) = pdin,
there exists an identification

HomK0(N(λi), B[1/f ])ϕ=1 ∼= B[1/f ]ϕ
ri=pdi ∼= O(λi)(D(f)) (3.25)

where the last isomorphism follows from Proposition 3.4.9. As f ∈ P is arbitrarily chosen,
we obtain the isomorphism (3.23) by (3.22), (3.24) and (3.25).

Remark. As noted in Chapter II, Theorem 2.3.15, every isocrystal over K0 admits a direct
sum decomposition as in (3.22). Hence by Theorem 3.5.3 and Example 3.5.4 we obtain an
essentially surjective functor

E : ϕ−ModK0 −! BunX

where ϕ−ModK0 and BunX respectively denote the category of isocrystals over K0 and the
category of vector bundles on X. Furthremore, if we have 0 ≤ λi ≤ 1 for each i = 1, · · · , n,
then Proposition 2.3.18 from Chapter II yields a p-divisible group G over Fp with

E(D(G)[1/p]) '
n⊕
i=1

O(λi)
⊕mi .

However, the functor E is not an equivalence of categories; indeed, for arbitrary rational
numbers κ and λ with κ < λ, we have

Homϕ−ModK0
(N(κ), N(λ)) = 0 and HomOX (E(N(κ)), E(N(λ))) 6= 0.
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4. Applications to p-adic representations

In this section, we prove some fundamental results about p-adic representations and period
rings by exploiting our accumulated knowledge of the Fargues-Fontaine curve. The primary
references for this section are Fargues and Fontaine’s survey paper [FF12] and Morrow’s notes
[Mor].

4.1. Geometrization of p-adic period rings

Throughout this section, we let K be a p-adic field with the absolute Galois group ΓK ,
the inertia group IK and the residue field k. We also write W (k) for the ring of Witt vectors
over k, and K0 for its fraction field.

Proposition 4.1.1. The tilt of CK is algebraically closed.

Proof. Let f(x) be an arbitrary monic polynomial of degree d > 0 over C[K . We wish to

show that f(x) has a root in C[K . Take an element m in the maximal ideal of OC[K
. We may

replace f(x) by mndf(x/mn) for some sufficiently large n to assume that f(x) is a polynomial
over OC[K

. Moreover, we may assume d > 1 since otherwise the assertion would be obvious.

Let us now write

f(x) = xd + c1x
d−1 + · · ·+ cd with ci ∈ OC[K

.

Proposition 2.1.7 and Proposition 2.1.8 from Chapter III together yield an identification

OC[K
∼= lim −

c 7!cp
OCK/pOCK . (4.1)

Write (ci,n) for the image of each ci under this isomorphism, and choose a lift c̃i,n ∈ OCK of
each ci,n. In addition, for each n ≥ 0 we set

fn(x) := xd + c1,nx
d−1 + · · ·+ cd,n and f̃n(x) := xd + c̃1,nx

d−1 + · · ·+ c̃d,n.

Then for each n ≥ 1 we have

fn−1(xp) = xdp + cp1,nx
(d−1)p + · · ·+ cpd,n =

(
xd + c1,nx

d−1 + · · ·+ cd,n

)p
= fn(x)p. (4.2)

Moreover, since CK is algebraically closed as noted in Chapter II, Proposition 3.1.5, each

f̃n(x) admits a factorization

f̃n(x) = (x− αn,1) · · · (x− αn,d) with αn,j ∈ OCK .

Let us denote by αn,j the image of each αn,j under the natural surjection OCK � OCK/pOCK .
For each αn,j with n ≥ 1 we obtain fn−1(αn,j

p) = fn(αn,j)
p = 0 by (4.2), and in turn find

f̃n−1(αpn,j) = (αpn,j − αn−1,1) · · · (αpn,j − αn−1,d) ∈ pOCK .

Hence for each αn,j with n ≥ 1 we have αpn,j −αn−1,l ∈ p1/dOCK for some l, and consequently

obtain αn,j
pd = αn−1,l

pd−1
by Lemma 2.1.6 from Chapter III. It follows that there exists

a sequence of integers (jn) with αn,jn
pd = αn−1,jn−1

pd−1
for all n ≥ 1. Let us now set

α :=
(
αn+d−1,jn+d−1

pd−1
)

. Then under the identification (4.1) we find

f(α) =
(
fn

(
αn+d−1,jn+d−1

pd−1
))

=
(
fn+d−1

(
αn+d−1,jn+d−1

))
= 0

where the second identity follows by (4.2). �

Remark. Our proof above readily extends to show that the tilt of an algebraically closed
perfectoid field is algebraically closed.
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For the rest of this section, we take F = C[K and regard CK as an untilt of F . We also

fix an element p[ ∈ OF with (p[)
]

= p and set ξ := [p[] − p ∈ Ainf . In addition, we choose a

valuation νF on F with νF (p[) = 1.

Proposition 4.1.2. Let ε be an element in OF with ε] = 1 and (ε1/p)
] 6= 1.

(1) We have ε ∈ 1 + m∗F .

(2) The element t := log(ε) ∈ Bϕ=p is a prime in P , and gives rise to a closed point ∞
on X with the following properties:

(i) The residue field at ∞ is naturally isomorphic to CK .

(ii) The completed local ring at ∞ is naturally isomorphic to B+
dR.

Proof. The first statement is an immediate consequence of Lemma 2.2.17 from Chapter
III (or the proof of Proposition 2.3.3). We then observe by Proposition 2.3.3 that t = log(ε)
vanishes at an element y∞ ∈ Y represented by CK , and consequently deduce the second
statement from Proposition 2.4.7 and Theorem 2.4.8. �

Proposition 4.1.3. There exists a natural isomorphism

B+
dR
∼= lim −

j

B/ ker(θ̂CK )j (4.3)

which induces a topology on B+
dR with the following properties:

(i) The subring Ainf of B+
dR is closed.

(ii) The map θCK [1/p] : Ainf [1/p] � CK induced by θCK is continuous and open with
respect to the p-adic topology on CK .

(iii) The logarithm on 1 + mF induces a continuous map log : Zp(1) −! B+
dR under the

natural identification Zp(1) = lim −µp
v(K) =

{
ε ∈ OF : ε] = 1

}
.

(iv) The multiplication by any uniformizer yields a closed embedding on B+
dR.

(v) The ring B+
dR is complete.

Proof. The natural isomorphism (4.3) is given by Proposition 2.2.7. Let us equip B+
dR

with the inverse limit topology via (4.3). The property (ii) follows from Proposition 1.2.16

and the fact that θCK [1/p] extends to θ̂CK . The property (iii) is evident by Proposition 3.1.8.

Let us now establish the property (i). Recall that we may regard Ainf [1/p] as a subring
of B+

dR in light of Corollary 2.2.11 from Chapter III. Proposition 3.1.4 implies that Ainf is
complete with respect to all Gauss norms. Moreover, by Example 2.1.6 we have |ξ|ρ < 1

for all ρ ∈ (0, 1), and consequently find that every ξ-adically Cauchy sequence in Ainf is also
Cauchy with respect to all Gauss norms. We then deduce the assertion by the fact that ξ

generates ker(θ̂CK ) as noted in Corollary 2.2.4.

It remains to verify the properties (iv) and (iv). We find by Proposition 1.2.16 that

ker(θ̂CK ) = ξB is closed in B, and in turn deduce that ker(θ̂CK )j = ξjB is closed in B for
each j ≥ 1. Hence the property (iv) follows by the fact that every uniformizer of B+

dR is a
unit multiple of ξ as noted in Proposition 2.2.7. In addition, we find by the completeness of B

that B/ ker(θ̂CK )j is complete for each j ≥ 1, and consequently obtain the property (iv). �

Remark. Proposition 4.1.3 proves Proposition 2.2.16 from Chapter III. Our proof does not
rely on any unproved results such as Proposition 2.4.1, Proposition 3.4.4 or Proposition 3.5.1.
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We henceforth fix ε ∈ 1 + m∗F , t ∈ Bϕ=p and ∞ ∈ |X| as in Proposition 4.1.2. We also
write B+ for the closure of Ainf [1/p] in B. In addition, for every ρ ∈ (0, 1) we denote by B+

ρ

the closure of Ainf [1/p] in B[ρ,ρ].

Lemma 4.1.4. Let V be a normed space over Qp, and let V̂0 denote the p-adic completion
of the closed unit disk V0 in V . The completion of V with respect to its norm is naturally

isomorphic to V̂0[1/p].

Proof. Since p is topologically nilpotent in Qp, we have a neighborhood basis for 0 ∈ V
given by the sets pnV0 for n ≥ 0. This implies that a sequence in V0 is Cauchy with respect to

the norm on V if and only if it is p-adically Cauchy. Hence V̂0 coincides with the completion
of V0 with respect to the norm on V . The assertion now follows by the fact that every Cauchy
sequence in V becomes a Cauchy sequence in V0 after a multiplication by some power of p. �

Remark. The notion of p-adic completion is not meaningful for V , as we have pnV = V for
all n ≥ 0.

Proposition 4.1.5. Let c be an element in O×F . There exists a canonical continuous isomor-
phism

B+
|c|
∼= ̂Ainf [[c]/p][1/p]

where ̂Ainf [[c]/p] denotes the p-adic completion of Ainf [[c]/p].

Proof. By construction, the topological ring B+
|c| is naturally isomorphic to the com-

pletion of Ainf [1/p] with respect to the Gauss |c|-norm. In light of Lemma 4.1.4, it is thus
sufficient to establish the identification

Ainf [[c]/p] =
{
f ∈ Ainf [1/p] : |f ||c| ≤ 1

}
.

Since we have |[c]/p||c| = 1, the ring Ainf [[c]/p] is contained in the set on the right hand side.

Let us now consider an arbitrary element f ∈ Ainf [1/p] with |f ||c| ≤ 1. We wish to show that

f belongs to Ainf [[c]/p]. Let us write the Teichmüller expansion of f as

f =
∑
n<0

[cn]pn +
∑
n≥0

[cn]pn with cn ∈ OF (4.4)

where the first summation on the right hand side contains only finitely many nonzero terms.
For every n ∈ Z we find |cn| |c|n ≤ |f ||c| = 1, or equivalently |cn| ≤ |c|−n. Hence for every

n < 0 we have cn = c−ndn for some dn ∈ OF , and consequently obtain

[cn]pn = [dn] · ([c]/p)−n ∈ Ainf [[c]/p].

The assertion is now evident by (4.4). �

Remark. Given two elements c, d ∈ O×F with |c| ≤ |d|, we can argue as above to obtain an
identification

B[|c|,|d|] ∼= ̂Ainf [[c]/p, p/[d]][1/p]

where ̂Ainf [[c]/p, p/[d]] denotes the p-adic completion of Ainf [[c]/p, p/[d]]. This is in some sense
reminiscent of our discussion in Example 1.3.13, which shows that for arbitrary positive real
numbers i, j ∈ Z[1/p] the ring B[|$|i,|$|j ] coincides with the completion of Ainf [1/p, 1/[$]] with

respect to the ideal I generated by [$i]/p and p/[$j ]. We can use the above identification
to show that the natural map B −! B+

dR extends to a map B[a,b] −! B+
dR for any closed

interval [a, b] ⊆ (0, 1).
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Proposition 4.1.6. We have natural continuous embeddings

B+
1/pp ↪−! B+

cris ↪−! B+
1/p.

Proof. Let A0
cris be the Ainf -subalgebra in Ainf [1/p] generated by the elements of the

form ξn/n! with n ≥ 0. By definition we have B+
cris = Acris[1/p], where Acris is naturally iso-

morphic to the p-adic completion of A0
cris as noted in Chapter III, Proposition 3.1.9. Moreover,

Proposition 4.1.5 yields natural identifications

B+
1/pp
∼= ̂Ainf [[(p[)p]/p][1/p] and B+

1/p
∼= ̂Ainf [[p[]/p][1/p],

where ̂Ainf [[(p[)p]/p] and ̂Ainf [[p[]/p] respectively denote the p-adic completions ofAinf [[(p
[)p]/p]

and Ainf [[p
[]/p]. Hence it suffices to show

Ainf [[(p
[)p]/p] ⊆ A0

cris ⊆ Ainf [[p
[]/p]. (4.5)

We obtain the first inclusion in (4.5) by observing

[p[]p

p
=

(ξ + p)p

p
= (p− 1)! · ξ

p!
+

p∑
i=1

(
p

i

)
pi−1ξp−i ∈ A0

cris.

In addition, we find

ξn

n!
=

([p[]− p)n

n!
=
pn

n!

(
[p[]

p
− 1

)n
∈ Ainf [[p

[]/p] for all n ≥ 0

as pn/n! is an element of Zp, and consequently deduce the second inclusion in (4.5). �

Lemma 4.1.7. Let [a, b] be a closed subinterval of (0, 1). There exists some e > 0 with

|f |b ≤ |f |
e
a for every f ∈ Ainf [1/p].

Proof. Let us set l := − logp(b) and r := − logp(a). Since Lf is a concave piecewise
linear function as noted in Corollary 2.1.11, its graph on (0, l] should be bounded above by
the line which passes through the points (l,Lf (l)) and (r,Lf (r)). Hence we have

Lf (s) ≤
Lf (r)− Lf (l)

r − l
(s− l) + Ll for all s ∈ (0, l],

and consequently find

lim
s!0
Lf (s) ≤

−l(Lf (r)− Lf (l))

r − l
+ Ll =

−lLf (r) + rLf (l)

r − l
.

Meanwhile, Proposition 3.1.4 yields an integer n with

Lf (s) = − logp

(
|f |p−s

)
≥ − logp(p

−ns) = ns for all s ∈ (0,∞),

and in turn implies lim
s!0
Lf (s) ≥ 0. We thus obtain rLf (l) ≥ lLf (r), and consequently find

|f |b = p−Lf (r) ≤ p−(r/l)Lf (l) = |f |r/la
as desired. �

Proposition 4.1.8. For every closed interval [a, b] ⊆ (0, 1), there exists a canonical continu-
ous embedding B+

a ↪−! B+
b .

Proof. Lemma 4.1.7 implies that every Cauchy sequence in Ainf [1/p] with respect to the
Gauss a-norm is Cauchy with respect to the Gauss b-norm. Hence the assertion is evident by
construction. �
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For the rest of this section, we write B̃+ := lim−!B+
ρ where the transition maps are the

natural injective maps given by Proposition 4.1.8, and regard each B+
ρ as a subring of B̃+.

We also regard B+
cris as a subring of B̃+ in light of Proposition 4.1.6.

Proposition 4.1.9. The Frobenius automorphism of Ainf [1/p] uniquely extends to an auto-

morphism ϕ+ of B̃+ with the following properties:

(i) ϕ and ϕ+ agree on B+.

(ii) The Frobenius endomorphism of Bcris and ϕ+ agree on B+
cris.

(iii) ϕ+ restricts to an isomorphism B+
ρ ' B+

ρp for every ρ ∈ (0, 1).

Proof. Let ϕinf denote the Frobenius automorphism of Ainf [1/p]. Then we have

ϕinf

(∑
[cn]pn

)
=
∑

[cpn]pn for all cn ∈ OF ,

and consequently find

|ϕinf(f)|ρp = |f |pρ for all f ∈ Ainf [1/p] and ρ ∈ (0, 1).

It follows by Lemma 1.2.15 that ϕinf uniquely extends to a continuous ring isomorphism
ϕ+
ρ : B+

ρ ' B+
ρp for each ρ ∈ (0, 1). For every closed subinterval [a, b] of (0, 1), the restriction

of ϕ+
b on B+

a is a continuous extension of ϕinf , and thus agrees with ϕ+
a . Hence we obtain an

isomorphism

ϕ+ : B̃+ = lim−!B+
ρ ' lim−!B+

ρp = B̃+.

It is evident by construction that ϕ+ is an extension of ϕinf and each B+
ρ with ρ ∈ (0, 1).

The uniqueness of each ϕ+
ρ implies that ϕ+ is a unique extension of ϕinf with the property

(iii). Moreover, the restriction of ϕ+ on B+
cris is a continuous extension of ϕinf , and thus agrees

with the Frobenius endomorphism on B+
cris by Lemma 3.1.10 from Chapter III.

It remains to verify the property (i) of ϕ+. By construction, both ϕ and ϕ+ extend ϕinf .
In addition, the property (iii) implies that ϕ+ restricts to an isomorphism

B+ = lim −B
+
ρ ' lim −B

+
ρp = B+

where the transition maps in each limit are the natural inclusions. Since B+ is the closure
of Ainf [1/p] in B, we deduce that this isomorphism agrees with the restriction of ϕ on B+,
thereby completing the proof. �

Remark. Let us give an alternative description of the ring B̃+ and its Frobenius automor-
phism. We define the Gauss 1-norm on Ainf [1/p] by∣∣∣∑[cn]pn

∣∣∣
1

:= sup
n∈Z

(|cn|) for all cn ∈ OF .

By construction we have |f |1 = lim
ρ!1
|f |ρ for every f ∈ Ainf [1/p], and consequently find that

the Gauss 1-norm is indeed a multiplicative norm. It is then straightforward to verify that

B̃+ is naturally isomorphic to the completion of Ainf [1/p] with respect to the Gauss 1-norm.
Hence we may obtain ϕ+ as a unique continuous extension of ϕinf by Lemma 1.2.15.

However, we avoid using this description because working with the Gauss 1-norm is often
subtle. The main issue is that the natural map OF −! Ainf [1/p] given by the Teichmüler
lifts is not continuous with respect to the Gauss 1-norm. In fact, it is not hard to show

lim
c!0
|[1 + c]− 1|1 = 1 6= 0.
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Definition 4.1.10. We refer to the map ϕ+ constructed in Proposition 4.1.9 as the Frobe-

nius automorphism of B̃+. We often abuse notation and write ϕ for ϕ+ and the Frobenius
endomorphism of Bcris.

Proposition 4.1.11. The Frobenius endomorphism of Bcris is injective.

Proof. Proposition 4.1.9 implies that ϕ is injective on B+
cris, and in turn yields the

desired assertion as we have Bcris = B+
cris[1/t] and ϕ(t) = pt by Proposition 3.1.11 from

Chapter III. �

Remark. Proposition 4.1.11 proves Theorem 3.1.13 from Chapter III.

Proposition 4.1.12. We have identities

B+ =
⋂
n≥0

ϕn(B+
cris) and B+[1/t] =

⋂
n≥0

ϕn(Bcris).

Proof. By Proposition 4.1.6 and Proposition 4.1.9 we have

B+

1/ppn+1 = ϕn(B+
1/pp) ⊆ ϕ

n(B+
cris) ⊆ ϕ

n(B+
1/p) = B+

1/ppn
for every n ≥ 0,

and consequently find

B+ =
⋂
ρ≥0

B+
ρ =

⋂
n≥0

B+
1/pp

n =
⋂
n≥0

ϕn(B+
cris).

The second identity then follows as we have Bcris = B+
cris[1/t] and ϕ(t) = pt by Proposition

3.1.11 from Chapter III. �

Proposition 4.1.13. For every n ∈ Z, we have

Bϕ=pn = (B+)ϕ=pn = (B+
cris)

ϕ=pn .

Proof. The first identity is an immediate consequence of Proposition 3.1.11. The second
identity follows from Proposition 4.1.12. �

Corollary 4.1.14. We have X = Proj

⊕
n≥0

(B+
cris)

ϕ=pn

.

Remark. Corollary 4.1.14 recovers the first definition of the Fargues-Fontaine curve as given
in Chapter I, Definition 2.1.1.

Proposition 4.1.15. There exists a canonical isomorphism Be ∼= B[1/t]ϕ=1.

Proof. Proposition 4.1.12 and Proposition 4.1.13 together yield a natural identification

B[1/t]ϕ=1 ∼= B+[1/t]ϕ=1 = Bϕ=1
cris = Be

as desired. �

Corollary 4.1.16. The ring Be is a principal ideal domain.

Proof. By construction, the element t induces the closed point ∞ on X. Hence we
have an identification X\ {∞ } ∼= Spec (B[1/t]ϕ=1), and consequently deduce the assertion
by Theorem 2.4.8. �

Remark. Corollary 4.1.16 was first proved by Fontaine prior to the construction of the
Fargues-Fontaine curve. Fontaine’s proof was motivated by a result by Berger [Ber08] that
Be is a Bézout ring, and eventually inspired the first construction of the Fargues-Fontaine
curve as we will soon describe in the subsequent subsection.



4. APPLICATIONS TO p-ADIC REPRESENTATIONS 167

4.2. Essential image of the crystalline functor

In this subsection, we describe the essential image of the functor Dcris using vector bundles
on the Fargues-Fontaine curve. Our discussion will be cursory, and will focus on explaining
some key ideas for studying p-adic Galois representations via vector bundles on the Fargues-
Fontaine curve. Throughout this subsection, let us write U := X\ {∞ }.

Proposition 4.2.1. Let Me be a free Be-module of finite rank, and let M+
dR be a B+

dR-lattice
in MdR := Me ⊗Be BdR.

(1) There exists a unique vector bundle V on X with

H0(U,V) ∼= Me and V̂∞ ∼= M+
dR

where V̂∞ denotes the completed stalk of V at ∞.

(2) The vector bundle V gives rise to a natural exact sequence

0 H0(X,V) Me ⊕M+
dR MdR H1(X,V) 0

where the middle arrow maps each (x, y) to x− y.

Remark. The first statement is in fact a standard application of the Beauville-Laszlo theorem
as stated in [BL95] or [Sta, Tag 0BP2]. The second statement then follows as a variant of
the Mayer-Vietoris long exact sequence.

Example 4.2.2. By Proposition 4.1.2 and Proposition 4.1.15 we have natural identifications

H0(U,OX) ∼= Be and ÔX,∞ ∼= B+
dR

where ÔX,∞ denotes the completed local ring at ∞. Hence by Therem 3.2.9 and Proposition
4.2.1 we obtain a natural exact sequence

0 Qp Be ⊕B+
dR BdR 0,

which in turn yields the fundamental exact sequence

0 Qp Be BdR/B
+
dR 0

as described in Chapter III, Theorem 3.1.14.

Remark. In fact, the Fargues-Fontaine curve was originally constructed by gluing Spec (Be)
and Spec (B+

dR) using the fundamental exact sequence, partially motivated by Colmez’s theory
of Banach-Colmez spaces as developed in [Col02].

Definition 4.2.3. Let N be a filtered isocrystal over K. Let us write rk(N) and deg(N)
respectively for the rank and the degree of N as an isocrystal over K0.

(1) We define the degree of the filtered vector space NK , denoted by deg(NK), to be the

unique integer d with Fild(det(NK)) 6= 0.

(2) We define the degree of N by

deg•(N) := deg(N)− deg(NK).

(3) If N is not zero, we define its slope by

µ•(N) :=
deg•(N)

rk(N)
.

Remark. It is straightforward to verify that MFϕK is a slope category as remarked after
Theorem 3.3.22. Hence every N ∈ MFϕK admits a unique Harder-Narasimhan filtration.

https://stacks.math.columbia.edu/tag/0BP2
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Example 4.2.4. Let V be a crystalline ΓK-representation. We wish to show that Dcris(V )
has degree 0. Proposition 3.2.14 from Chapter III implies that det(V ) is a crystalline ΓK-
representation with det(Dcris(V )) ∼= Dcris(det(V )), and consequently yield

deg•(Dcris(V )) = deg•(det(Dcris(V ))) = deg•(Dcris(det(V ))).

Hence we may replace V with det(V ) to assume dimQp V = 1.

Let us choose a continuous character η : ΓK −! Q×p with V ' Qp(η). Proposition 2.4.4
and Proposition 3.2.8 from Chapter III together imply that V is Hodge-Tate with

Dcris(V )K ∼= DdR(V ) and gr(DdR(V )) ∼= DHT(V ).

Hence Proposition 1.1.13 from Chapter III yields an integer n such that ηχn(IK) is finite. It
follows by Theorem 1.1.8 from Chapter III that n is the Hodge-Tate weight of V , which in
turn implies deg(Dcris(V )K) = n.

It remains to show that Dcris(V ) has degree n as an isocrystal. Let us denote by Kun

the maximal unramified extension of K in K, and by K̂un the p-adic completion of Kun. We

also write W (k) for the ring of Witt vectors over k, and K̂un
0 for the fraction field of W (k).

Example 3.2.2 and Proposition 3.2.13 from Chapter III together imply that V (n) ' Qp(ηχ
n)

is crystalline with
Dcris(V (n)) ∼= Dcris(V )⊗K Dcris(Qp(n)). (4.6)

We then find by Example 3.2.9 from Chapter III that ηχn(IK) is trivial. Moreover, by

construction K̂un is a p-adic field with IK as the absolute Galois group. Therefore we have

Dcris(V (n)) = (V (n)⊗Qp Bcris)
ΓK ⊆ (V (n)⊗Qp Bcris)

IK ∼= BIK
cris
∼= K̂un

0

where the last identification follows from Theorem 3.1.8 from Chapter III. It follows by Propo-
sition 3.2.7 from Chapter III that the Frobenius automorphism of Dcris(V (n)) extends to the

Frobenius automorphism of K̂un
0 , which in turn implies that Dcris(V (n)) has degree 0 as an

isocrystal. In addition, as we have ϕ(t) = pt by construction, we deduce by Example 3.2.2
from Chapter III that Dcris(Qp(n)) has degree −n as an isocrystal. The assertion is now
straightforward to verify by the natural isomorphism (4.6) in MFϕK .

Definition 4.2.5. Let N be a filtered isocrystal over K.

(1) We say that N is semistable if we have µ•(M) ≤ µ•(N) for every nonzero filtered
subisocrystal M of N .

(2) We say that N is weakly admissible if it is semistable of slope 0.

(3) We say that N is admissible if it is in the essential image of Dcris.

Proposition 4.2.6. Every admissible filtered isocrystal over K is weakly admissible.

Remark. The proof of Proposition 4.2.6 is mostly an elementary algebra, after replacing
K by the completion of the maximal unramified extension of K in light of the remark af-
ter Proposition 3.2.20 from Chapter III. Curious readers can find a detailed proof in [BC,
Theorem 9.3.4].

Proposition 4.2.7. Let N be a weakly admissible filtered isocrystal over K, and set

V := (N ⊗K0 Bcris)
ϕ=1 ∩ Fil0(NK ⊗K BdR).

(1) V is naturally a crystalline ΓK-representation with dimQp(V ) ≤ dimK0(N).

(2) N is admissible if and only if we have dimQp(V ) = dimK0(N).

Remark. We refer the readers to [BC, Proposition 9.3.9] for a complete proof. If N is
admissible, the assertions are evident by Proposition 3.2.18 from Chapter III.
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Proposition 4.2.8. Let N be a filtered isocrystal over K.

(1) There exists a unique vector bundle F(N) on X with

H0(U,F(N)) ∼= (N ⊗K0 Bcris)
ϕ=1 and F̂(N)∞ ∼= Fil0(NK ⊗K BdR)

where F̂(N)∞ denotes the completed stalk of F(N) at ∞.

(2) We have rk(N) = rk(F(N)), deg•(N) = deg(F(N)) and µ•(N) = µ(F(N)).

(3) N is weakly admissible if and only if F(N) is semistable of slope 0.

Remark. A complete proof of Proposition 4.2.8 may be added later. Here we explain some
key ideas as sketched in [FF18, Lemma 10.5.5 and Proposition 10.5.6].

The first statement follows from Proposition 4.2.1 once we verify verify using Theorem
2.3.15 from Chapter II that (N ⊗K0 Bcris)

ϕ=1 is a free Be-module with an identification

(N ⊗K0 Bcris)
ϕ=1 ⊗Be BdR

∼= NK ⊗K BdR.

The second statement can be obtained by realizing F(N) in a short exact sequence

0 F(N) E(N) T 0

where T is a torsion sheaf supposed at∞. The third statement is obtained as a special case of
the fact that the functor F preserves the Harder-Narasimhan filtration, which is not hard to
prove by observing that the Harder-Narasimhan filtrations of N and F(N) are stable under
the natural actions of ΓK .

Theorem 4.2.9 (Colmez-Fontaine [CF00]). A filtered isocrystal N over K is admissible if
and only if it is weakly admissible.

Proof. If N is admissible, then it is weakly admissible by Proposition 4.2.6. Let us now
assume that N is weakly admissible, and set

V := (N ⊗K0 Bcris)
ϕ=1 ∩ Fil0(NK ⊗K BdR).

In light of Proposition 4.2.7, it suffices to show dimQp(V ) = dimK0(N). Proposition 4.2.8
yields a semistable vector bundle F(N) on X of slope 0 with

H0(U,F(N)) ∼= (N ⊗K0 Bcris)
ϕ=1 and F̂(N)∞ ∼= Fil0(NK ⊗K BdR)

where F̂(N)∞ denotes the completed stalk of F(N) at ∞. Hence by Proposition 4.2.1 we
obtain a canonical isomorphism

H0(X,F(N)) ∼= (N ⊗K0 Bcris)
ϕ=1 ∩ Fil0(NK ⊗K BdR) = V.

Moreover, Theorem 3.5.3 and Proposition 4.2.8 together imply that F(N) is isomorphic to
O⊕rX where we set r := dimK0(N), and consequently yields an isomorphism

V ∼= H0(X,F(N)) ' H0(X,OX)⊕r ∼= Q⊕rp
by Proposition 3.1.6 and Theorem 3.2.9. We thus find dimQp(V ) = dimK0(N) as desired. �

Remark. While the proof above greatly simplifies the original proof by Colmez-Fontaine
[CF00] and another proof by Berger [Ber08], these prior proofs contained a number of
important ideas that contributed to the discovery of the Fargues-Fontaine curve.

Corollary 4.2.10. The functor Dcris is an equivalence between Repcris
Qp (ΓK) and the category

of weakly admissible filtered isocrystals over K.

Proof. This is immediate by Theorem 3.2.19 from Chapter III and Theorem 4.2.9. �
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[GH94] Benedict H. Gross and Michael J. Hopkins, Equivariant vector bundles on the Lubin-Tate moduli

space, Topology and Representation Theory, Contemporary Mathematics, vol. 158, American Math-
ematical Society, 1994, pp. 23–88.

171

http://math.stanford.edu/~conrad/papers/notes.pdf
http://math.stanford.edu/~conrad/papers/notes.pdf
http://swc.math.arizona.edu/aws/2017/2017BhattNotes.pdf
http://swc.math.arizona.edu/aws/2017/2017BhattNotes.pdf
https://www.imo.universite-paris-saclay.fr/~fontaine/galoisrep.pdf
https://www.imo.universite-paris-saclay.fr/~fontaine/galoisrep.pdf


172 BIBLIOGRAPHY

[Gie73] David Gieseker, Stable vector bundles and the frobenius morphism, Annales de l’ENS Ser. 4, 6
(1973), no. 1, 95–101 (en). MR 48 #3963

[Gro60] Alexander Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique.
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[Nér64] André Néron, Modéles minimaux des variétés abéliennes sur les corps locaux et globaux, Publications
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[Sch13] , p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi 1 (2013), e1.

[Sch18] , Étale cohomology of diamonds, arXiv:1709.07343.
[Sen80] Shankar Sen, Continuous cohomology and p-adic Galois representations, Invent. Math. (1980), no. 62,

89–116.
[Sta] The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu.
[Sti] Jacob Stix, A course on finite flat group schemes and p-divisible groups, http://www.math.

uni-frankfurt.de/~stix/skripte/STIXfinflatGrpschemes20120918.pdf.
[SW20] Peter Scholze and Jared Weinstein, Berkeley lectures on p-adic geometry, Annals of Math. Studies,

vol. 207, 2020.
[Tat67] John Tate, p-divisible groups, Proceedings of a Conference on Local Fields (Berlin, Heidelberg) (T. A.

Springer, ed.), Springer Berlin Heidelberg, 1967, pp. 158–183.
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